精英家教网 > 高中数学 > 题目详情

【题目】将函数f(x)=sin(2x﹣ )的图象向右平移 个单位后得到函数g(x),则g(x)具有性质(  )
A.最大值为1,图象关于直线x= 对称
B.在(0, )上单调递减,为奇函数
C.在(﹣ )上单调递增,为偶函数
D.周期为π,图象关于点( ,0)对称

【答案】B
【解析】解:将函数f(x)=sin(2x﹣ )的图象向右平移 个单位后得到

函数g(x)=sin[2(x﹣ )﹣ ]=sin(2x﹣π)=﹣sin2x的图象,

当x= 时,求得g(x)=0,不是最值,故g(x)的图象不关于直线x= 对称,故排除A.

在(0, )上,2x∈(0, ),sin2x单调递增,故g(x)单调递减,且g(x)为奇函数,

故B满足条件,C不满足条件.

当x= 时,g(x)=﹣ ≠0,故g(x)的图象不关于点( ,0)对称,

所以答案是:B.

【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b是正实数,设函数f(x)=xlnx,g(x)=﹣a+xlnb.
(Ⅰ)设h(x)=f(x)﹣g(x),求h(x)的单调区间;
(Ⅱ)若存在x0 , 使x0∈[ ]且f(x0)≤g(x0)成立,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=﹣|x﹣3|.
(1)若h(x)﹣|x﹣2|≤n对任意的x>0恒成立,求实数n的最小值;
(2)若函数f(x)= ,求函数g(x)=f(x)+h(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆G: +y2=1,与x轴不重合的直线l经过左焦点F1 , 且与椭圆G相交于A,B两点,弦AB的中点为M,直线OM与椭圆G相交于C,D两点.
(1)若直线l的斜率为1,求直线OM的斜率;
(2)是否存在直线l,使得|AM|2=|CM||DM|成立?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体ABCDEF中,ABCD为直角梯形,AB∥CD,∠DAB=90°,四边形ADEF为等腰梯形,EF∥AD,已知AE⊥EC,AB=AF=EF=2,AD=CD=4.

(1)求证:平面ABCD⊥平面ADEF;
(2)求直线CF与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项均为正数的等比数列{an}的前n项和为Sn , 满足
(1)求a1及通项公式an
(2)若 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边长分别为a,b,c,且
(1)求角B的大小;
(2)若 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

年龄

[15,25)

[25,35)

[35,45)

[45,55)

[55,65]

支持“延迟退休”的人数

15

5

15

28

17


(1)由以上统计数据填2×2列联表,并判断是否95%的把握认为以45岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;

45岁以下

45岁以上

总计

支持

不支持

总计


(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽2人.
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828


查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面的程序框图中,若输入n=40,则输出的结果为

查看答案和解析>>

同步练习册答案