精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=sin(ωx+φ)+cos(ωx+φ) 的最小正周期为π,且f(﹣x)=f(x),则(
A.f(x)在 单调递减
B.f(x)在( )单调递减
C.f(x)在(0, )单调递增
D.f(x)在( )单调递增

【答案】A
【解析】解:由于f(x)=sin(ωx+)+cos(ωx+)=

由于该函数的最小正周期为T= ,得出ω=2,

又根据f(﹣x)=f(x),得φ+ = +kπ(k∈Z),以及|φ|< ,得出φ=

因此,f(x)= cos2x,

若x∈ ,则2x∈(0,π),从而f(x)在 单调递减,

若x∈( ),则2x∈( ),

该区间不为余弦函数的单调区间,故B,C,D都错,A正确.

故选A.

【考点精析】掌握正弦函数的单调性是解答本题的根本,需要知道正弦函数的单调性:在上是增函数;在上是减函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(理)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点.设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是(

A.[ ,1]
B.[ ,1]
C.[ ]
D.[ ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合{φ|f(x)=sin[(x﹣2φ)π]+cos[(x﹣2φ)π]为奇函数,且|logaφ|<1}的子集个数为4,则a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中既是奇函数又是增函数的是(
A.y=x3+x
B.y=logax
C.y=3x
D.y=﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,cosA=﹣ ,cosB=
(1)求sinA,sinB,sinC的值
(2)设BC=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分图象如图所示.
(1)求f(x)的解析式;
(2)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的 倍,再将所得函数图象向右平移 个单位,得到函数y=g(x)的图象,求g(x)的单调递增区间;
(3)当x∈[﹣ ]时,求函数y=f(x+ )﹣ f(x+ )的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
(1)求a,b的值;
(2)不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;
(3)方程f(|2x﹣1|)+k( ﹣3)有三个不同的实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.
(1)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆Q的方程;
(2)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为 ,圆心在直线l1:x﹣y+1=0上的圆C与直线l2 x﹣y+1﹣ =0相交于M,N两点,且|MN|=
(1)求圆C的标准方程;
(2)当圆心C的横、纵坐标均为整数时,若对任意m∈R,直线l3:mx﹣y+ +1=0与圆C恒有公共点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案