精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|log0.5x|,若正实数m,n(m<n)满足f(m)=f(n),且f(x)在区间[m2 , n]上的最大值为4,则n﹣m=(
A.
B.
C.
D.

【答案】B
【解析】解:∵f(x)=|log0.5x|,正实数m,n(m<n)满足f(m)=f(n),
∴0<m<1<n,且|log0.5m|=|log0.5n|,∴log0.5m=﹣log0.5n,
∴log0.5m+log0.5n=0,解得mn=1,
又∵f(x)在区间[m2 , n]上的最大值为4,
∴|log0.5m2|=4或|log0.5n|=4,即log0.5m2=4或log0.5n=﹣4,
解得m= 或n=16,当m= 时,由mn=1可得n=4,此时n﹣m=
当n=16时,由mn=1可得m= ,这与m<n矛盾,应舍去.
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,且当时, ,则对任意,函数的零点个数至多有( )

A. 3个 B. 4个 C. 6个 D. 9个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正实数a,b满足a+b=1,则(
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,CD和SC的中点.求证:

(1)直线EG∥平面BDD1B1
(2)平面EFG∥平面BDD1B1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是函数y=f(x)的导函数f′(x)的图象,则下面判断正确的是(

A.在区间(﹣2,1)上f(x)是增函数
B.在(1,3)上f(x)是减函数
C.在(4,5)上f(x)是增函数
D.当x=4时,f(x)取极大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知θ∈( ),若存在实数x,y同时满足 = + = ,则tanθ的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1 , F2在x轴上,离心率e=

(1)求椭圆E的方程;
(2)求∠F1AF2的角平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司研究一款畅销保险产品的保费与销量之间的关系,根据历史经验,若每份保单的保费在元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下的对应数据:

(1)试据此求出关于的线性回归方程

(2)若把回归方程当做的线性关系,试计算每份保单的保费定为多少元此产品的保费总收入最大,并求出该最大值;

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,A(2,4),B(﹣1,2),C,D为动点,
(1)若C(3,1),求平行四边形ABCD的两条对角线的长度
(2)若C(a,b),且 ,求 取得最小值时a,b的值.

查看答案和解析>>

同步练习册答案