精英家教网 > 高中数学 > 题目详情

球面上有三点A,B,C,其中OA,OB,OC两两互相垂直(O为球心),且过A、B、C三点的截面圆的面积为,则球的表面积(    )

A、    B、   C、    D、

 

【答案】

A

【解析】

试题分析:因为过A、B、C三点的截面圆的面积为,所以在?ABC中由正弦定理得:,又因为OA,OB,OC两两互相垂直,所以,所以球的表面积

考点:球的表面积公式;正弦定理;三棱锥的结构特征。

点评:本题主要考查了学生的抽象概括能力、空间想象能力、运算求解能力以及转化思想,该题灵活性较强,难度较大。该题若直接利用三棱锥来考虑不宜入手,注意到条件中的垂直关系,结合正弦定理来解决。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

球O球面上有三点A、B、C,已知AB=18,BC=24,AC=30,且球半径是球心O到平面ABC的距离的2倍,求球O的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

表面积为16π的球面上有三点A、B、C,∠ACB=60°,AB=
3
,则球心到截面ABC的距离及B、C两点间球面距离最大值分别为(  )
A、3,
3
B、
3
π
3
C、
3
3
D、3,
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

半径为1的球面上有三点A、B、C,其中AB=1,BC=
3
,A、C两点间的球面距离为
π
2
,则球心到平面ABC的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球面上有三点A、B、C,此三点构成一个边长为l的等边三角形,球心到平面ABC的距离等于球半径
1
3
,则球半径是
6
4
6
4

查看答案和解析>>

科目:高中数学 来源: 题型:

半径为1的球面上有三点A,B,C,若A和B,A和C,B和C的球面距离都是
π
2
,过A、B、C三点做截面,则球心到面的距离为
3
3
3
3

查看答案和解析>>

同步练习册答案