精英家教网 > 高中数学 > 题目详情
9.函数f(x)=x2-x-2,x∈[-5,5],在定义域内任取一点x0,使f(x0)>0的概率是(  )
A.$\frac{3}{10}$B.$\frac{2}{3}$C.$\frac{7}{10}$D.$\frac{4}{5}$

分析 令f(x)=x2-x-2>0,解得:x∈[-5,-1)∪(2,5],代入古典概型概率计算公式,可得答案.

解答 解:令f(x)=x2-x-2>0,
解得:x∈[-5,-1)∪(2,5],
故在定义域内任取一点x0,使f(x0)>0的概率P=$\frac{(-1)-(-5)+5-2}{5-(-5)}$=$\frac{7}{10}$,
故选:C

点评 本题考查的知识点是几何概型,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500的部分为全月应纳税所得额.此项税款按下表分段累计计算:
全月应纳税所得额税率(%)
不超过1500元的部分3
超过1500元至4500元的部分10
超过4500元至9000元的部分20
凯里市某市民10月份应交纳税额为256元,那么他当月的工资、薪金所得是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在二项式($\root{3}{{x}^{2}}$-$\frac{1}{2}$)n的展开式中,只有第5项的二项式系数最大,则n=8;展开式中的第4项为-7${x}^{\frac{10}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设Sn=1-3+5-7+…+(-1)n-1(2n-1)(n∈N*),则Sn等于(  )
A.nB.-nC.(-1)nnD.(-1)n-1n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x${\;}^{3}-\frac{9}{2}{x}^{2}+6x-a$.
(1)求f(x)的极值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.变式训练:已知函数f(x)=ex-$\frac{2}{x}$+1.求证:
(1)函数f(x)在(0,+∞)上为增函数;
(2)方程f(x)=0没有负实数限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.实数x,y满足的不等式组$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$所表示的平面区域面积为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=2f′(1)lnx-x,则f(x)的解析式为f(x)=2lnx-x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知指数函数y=g(x)满足g(3)=8,定义域为R的函数f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函数.
(1)确定y=f(x)和y=g(x)的解析式;
(2)判断函数f(x)的单调性,并用定义证明;
(3)若对任意x∈[-5,-1]都有f(1-x)+f(1-2x)>0成立,求x的取值范围.

查看答案和解析>>

同步练习册答案