A. | 1 | B. | $2+\frac{{\sqrt{15}}}{5}$ | C. | $4+\frac{{\sqrt{15}}}{5}$ | D. | $2\sqrt{2}+1$ |
分析 依题意,当且仅当Q、P、F2三点共线,且P在F2,Q之间时,|PF2|+|PQ|最小,且最小值为F2到l的距离,从而可求得|PF1|+|PQ|的最小值.
解答 解:设右焦点分别为F2,
∵∴|PF1|-|PF2|=2$\sqrt{2}$,
∴|PF1|=|PF2|+2$\sqrt{2}$,
∴|PF1|+|PQ|=|PF2|+2$\sqrt{2}$+|PQ|,
当且仅当Q、P、F2三点共线,且P在F2,Q之间时,|PF2|+|PQ|最小,且最小值为F2到l的距离,
可得l的方程为y=$±\frac{1}{\sqrt{2}}$x,F2($\sqrt{3},0$),F2到l的距离d=1
∴|PQ|+|PF1|的最小值为2$\sqrt{2}$+1.
故选D.
点评 本题考查双曲线的简单性质,利用双曲线的定义将|PF1|转化为|PF2|+2$\sqrt{2}$是关键,考查转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{2}$ | B. | 7 | C. | -1或7 | D. | -$\frac{1}{2}$或$\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|0<x<2} | B. | {x|1<x<2} | C. | {x|x>0} | D. | {x|x≥1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{x^2}{5}+\frac{y^2}{4}=1$ | B. | $\frac{x^2}{4}+{y^2}=1$ | C. | $\frac{x^2}{9}+\frac{y^2}{4}=1$ | D. | $\frac{x^2}{6}+\frac{y^2}{4}=1$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com