精英家教网 > 高中数学 > 题目详情
复数z=log2(m2-3m-3)+ilog2(3-m)(m∈R),如果a是纯虚数,则m的值为(  )
A、-1或4B、-1C、4D、3
考点:复数的基本概念
专题:数系的扩充和复数
分析:直接由给出的复数的实部等于0且虚部不等于0求解对数方程得答案.
解答: 解:∵z=log2(m2-3m-3)+ilog2(3-m)(m∈R)是纯虚数,
log2(m2-3m-3)=0
log2(3-m)≠0
,即
m2-3m-3=1
3-m≠1
,解得:m=-1.
故选:B.
点评:本题考查了复数的基本概念,考查了对数方程的解法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若数列{An}满足An+1=A
 
2
n
,则称{An}是“平方递推数列”,数列{xn}、{yn}满足x1=3,以(xn,xn+1)为坐标的点在函数f(x)=3x2+2x的图象上,以(xn,yn)为坐标的点在直线y=3x+1上.
(Ⅰ)求证:数列{yn}是“平方递推数列”;
(Ⅱ)设数列{yn}的前n项之积为Tn,令zn=log ynTn,求数列{zn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题;
①设[x]表示不超过x的最大整数,则[log21]+[og22]+[log23]+…+[log2127]+[log2128]=649;
②定义在R上的函数f(x),函数y=f(x-1)与y=f(1-x)的图象关于y轴对称;
③函数f(x)=
x-1
2x+1
的对称中心为(-
1
2
,-
1
2
);
④定义:若任意x∈A,总有a-x∈A(A≠∅),就称集合A为a的“闭集”,已知A⊆{1,2,3,4,5,6} 且A为6的“闭集”,则这样的集合A共有7个.其中正确的命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的程序框图,若输入的P是10,则输出的结果S的值为(  )
A、1-
1
29
B、1-
1
211
C、1-
1
210
D、10-
20
210

查看答案和解析>>

科目:高中数学 来源: 题型:

若a=20.5,b=log23,c=log2
2
2
,则有(  )
A、a>b>c
B、b>a>c
C、c>a>b
D、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}与等比数列{bn}(n∈N*)满足:a1=b1=1,a2=b2+1,a4=b4+1.
(1)求它们的通项公式;
(2)若数列{an}的前n项和为Sn且有an>0,数列{cn}满足cn=λ•bn+1-Sn,λ是不为0的常数.证明:λ>2是数列{cn+1-cn}是递增数列的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,底面ABCD是正方形,O是正方形的中心,
PO⊥底面ABCD,E是PC的中点.求证:
(1)PA∥平面BDE;
(2)AC⊥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:

下图,有一个是函数f(x)=
1
3
x3+ax2+(a2-1)x+1(a∈R,a≠0)
1
3
x3+ax2+(a2-1)2+1(a∈R,a≠0)的导函数f′(x)的图象,则f(-1)等于(  )
A、
1
3
B、-
1
3
C、
7
3
D、-
1
3
5
3

查看答案和解析>>

同步练习册答案