精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)请在所给的平面直角坐标系中画出函数的图象;

2)根据函数的图象回答下列问题:求函数的单调区间;

求函数的值域;求关于的方程在区间上解的个数.(回答上述3个小题都只需直接写出结果,不需给出演算步骤)

【答案】1)见解析;(2函数的单调递增区间为;函数的单调递减区间为函数的值域为方程在区间上解的个数为1.

【解析】

1)可先去绝对值变成分段函数后再画图,也可直接用画图的三步列表,描点,连线直接画图;(2图象向上去的部分对应的是增区间,向下来的部分对应的是减区间;观察图象找出最低点和最高点即为函数的最小和最大值;数形结合画图观察交点个数即可.

1)作图要规范:每条线上必须标明至少两个点的坐标,不在坐标轴上的点要用虚线标明对应的坐标值(教科书第28页例题的要求)(有一条直线没有标明点的坐标扣1分,两条都没标扣2分) ,

2函数的单调递增区间为

函数的单调递减区间为

函数的值域为

方程在区间上解的个数为1 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用年的隔热层,每厘米厚的隔热层建造成本为万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:厘米)满足关系:.若不建隔热层,每年的能源消耗费用为万元.为隔热层建造费用与年的能源消耗费用之和.

1)求的值及的表达式;

2)隔热层修建多厚时,总费用最小,并求其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】届世界杯足球赛在俄罗斯进行,某校足球协会为了解该校学生对此次足球盛会的关注情况,随机调查了该校名学生,并将这名学生分为对世界杯足球赛“非常关注”与“一般关注”两类,已知这名学生中男生比女生多人,对世界杯足球赛“非常关注”的学生中男生人数与女生人数之比为,对世界杯足球赛“一般关注”的学生中男生比女生少人.

(1)根据题意建立列联表,判断是否有的把握认为男生与女生对世界杯足球赛的关注有差异?

(2)该校足球协会从对世界杯足球赛“非常关注”的学生中根据性别进行分层抽样,从中抽取人,再从这人中随机选出人参与世界杯足球赛宣传活动,求这人中至少有一个男生的概率.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图像与轴无交点,求的取值范围;

(2)若方程在区间上存在实根,求的取值范围;

(3)设函数,当时若对任意的,总存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求图中的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;

(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.

分数段

[50,60)

[60,70)

[70,80)

[80,90)

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种树苗栽种时高度为A(A为常数)米,栽种n年后的高度记为f(n).经研究发现f(n)近似地满足 f(n),其中ab为常数,n∈Nf(0)A.已知栽种3年后该树木的高度为栽种时高度的3倍.

1)栽种多少年后,该树木的高度是栽种时高度的8倍;

2)该树木在栽种后哪一年的增长高度最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a≥2,不等式logax+loga[(a+1)ak-1-x]≥2k-1的解集为A,其中a∈N*,k∈N.

(1)A.

(2)f(k)表示A中自然数个数,求和Sn=f(1)+f(2)+…+f(n).

(3)a=2,比较Snn2+n的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案