精英家教网 > 高中数学 > 题目详情
已知点P(x,y)满足
x-4y+3≤0
3x+5y≤25
x-1≥0
,设A(2,0),则|
OP
|sin∠AOP
(O为坐标原点)的最大值为
22
5
22
5
分析:画出不等式组的可行域,判断出目标函数的几何意义,结合图象得到最大值.
解答:解:画出点P(x,y)满足
x-4y+3≤0
3x+5y≤25
x-1≥0
,可行域,
根据题意,
分析可得:
|
OP
|sin∠AOP
表示的是点P的纵坐标,
由图知,可行域中最上面的点(1,
22
5
)的纵坐标最大,
故答案为:
22
5
点评:本题主要考查了向量的数量积、简单的线性规划,以及利用几何意义求最值,巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P在直线2x-y+4=0上,且到x轴的距离是到y轴的距离的
23
倍,则点P的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是不等式组
y≤x-1
2x+y-3≤0
所表示的可行域内的一动点,则点P到抛物线x2=4y的焦点F的距离的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是椭圆
x2
16
+
y2
8
=1(x≠0,y≠0)上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且
F1M
MP
=0,则|
OM
|的取值范围是
(0,2
2
)
(0,2
2
)

查看答案和解析>>

科目:高中数学 来源:南京二模 题型:填空题

已知点P在直线2x-y+4=0上,且到x轴的距离是到y轴的距离的
2
3
倍,则点P的坐标是 ______.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x0y0)在曲线f(xy)=0上,P也在曲线g(xy)=0上.

求证:P在曲线f(xy)+λg(xy)=0上(λR).

查看答案和解析>>

同步练习册答案