【题目】为进一步优化教育质量平台,更好的服务全体师生,七天网络从甲、乙两所学校各随机抽取100名考生的某次“四省八校”数学考试成绩进行分析,分别绘制的频率分布直方图如图所示.
为了更好的测评各个学校数学学科的教学质量,该公司依据每一位考生的数学测试分数将其划分为“,,”三个不同的等级,并按照不同的等级,设置相应的对学校数学学科教学质量贡献的积分,如下表所示.
测试分数的范围 | 分数对应的等级 | 贡献的积分 |
等 | 1分 | |
等 | 2分 | |
等 | 3分 |
(1)用样本的频率分布估计总体的频率分布,若将甲学校考生的数学测试等级划分为“等”和“非等”两种,利用分层抽样抽取10名考生,再从这10人随机抽取3人,求3人中至少1人数学测试为“等”的概率;
(2)视频率分布直方图中的频率为概率,用样本估计总体,若从乙学校全体考生中随机抽取3人,记3人中数学测试等级为“等”的人数为,求的分布列和数学期望;
(3)根据考生的数学测试分数对学校数学学科教学质量贡献的积分规则,分别记甲乙两所学校数学学科质量的人均积分为和,用样本估计总体,求和的估计值,并以此分析,你认为哪所学校本次数学教学质量更加出色?
【答案】(1);(2)答案见解析;(3)答案见解析.
【解析】
(1)由题意首先确定需要抽取的人数,然后结合对立事件公式即可求得满足题意的概率值.
(2)由题意可知随机变量服从二项分布,结合二项分布的概率公式求得相应的概率值即可得到其分布列,然后求解数学期望即可;
(3)设和的估计值为和,求得其相应的值即可给出相应的结论.
(1)由题意知抽取的10人中,数学成绩为“等”和“非等”的人数分别为2人和8人.
设从这10人随机抽取3人,求3人中至少1人数学测试为“等”的事件为,
则.
(2)视频率分布直方图中的频率为概率,用样本估计总体,则每位考生数学测试等级为“等”的概率为.记3人中数学测试等级为“等”的人数为,则.
,,
,.
0 | 1 | 2 | 3 | |
故.
(3)由题可知,设和的估计值为和,
(分)
(分)
则,如果仅以考生的数学测试分数对学校贡献的积分来看,本次考试,我认为乙学校本次数学测试更加出色.
科目:高中数学 来源: 题型:
【题目】设有一组圆,下列四个命题:①存在一条定直线与所有的圆均相切;②存在一条定直线与所有的圆均相交;③存在一条定直线与所有的圆均不相交;④所有的圆均不经过原点;其中真命题的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有五个命题:
①函数的最小正周期是;
②终边在轴上的角的集合是;
③在同一坐标系中,函数的图象和函数的图象有三个公共点;
④把函数的图象向右平移个单位得到的图象;
⑤函数在上是减函数;
其中真命题的序号是( )
A.①②⑤B.①④C.③⑤D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,,,动点满足:直线与直线的斜率之积恒为,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)若点位于第一象限,过点,分别作直线,直线,直线,交于点.
①若点的横坐标为-1,求点的坐标;
②直线与曲线交于点,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为、,短轴的两个端点分别是、.
(1)若为等边三角形,求椭圆的标准方程;
(2)若椭圆的短轴长为,过点的直线与椭圆相交于、两点,且以为直径的圆经过点,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F为抛物线C:y2=2px(P>0)的焦点,过F垂直于x轴的直线被C截得的弦的长度为4.
(1)求抛物线C的方程.
(2)过点(m,0),且斜率为1的直线被抛物线C截得的弦为AB,若点F在以AB为直径的圆内,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,给出下列四个判断:
(1)的值域是;
(2)的图像是轴对称图形;
(3)的图像是中心对称图形;
(4)方程有解.
其中正确的判断有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com