精英家教网 > 高中数学 > 题目详情
已知椭圆的左,右两个顶点分别为.曲线是以两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点
(1)求曲线的方程;
(2)设两点的横坐标分别为,证明:.
(1);(2)详见解析.

试题分析:(1)由椭圆的左右顶点分别为可得,又由双曲线为顶点,故可设双曲线的方程为,再由条件中双曲线离心率为,可建立关于的方程,从而得到双曲线的方程为;(2)根据题意可设直线的方程为,将直线方程与椭圆方程联立求,消去后可得:,解得,因此,同理,将直线方程与双曲线方程联立,消去后可得
,从而得证.  .
试题解析:(1)依题意可得,∴设双曲线的方程为
又∵双曲线的离心率为,∴,即,∴双曲线的方程为
(2)设点),设直线的方程为
联立方程组,整理得:
, 同理可得,联立方程组,∴.    .  
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.
(1)求椭圆的方程;(2)若点的坐标为,不过原点的直线与椭圆相交于不同两点,设线段的中点为,且三点共线.设点到直线的距离为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆G:过点,C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧.
(1)求椭圆G的方程;
(2)求四边形ABCD 的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的焦点在轴上, 分别是椭圆的左、右焦点,点是椭圆在第一象限内的点,直线轴于点
(1)当时,
(1)若椭圆的离心率为,求椭圆的方程;
(2)当点P在直线上时,求直线的夹角;
(2) 当时,若总有,猜想:当变化时,点是否在某定直线上,若是写出该直线方程(不必求解过程).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知定点A(1,0),定圆C:(x+1)2+y2=8,M为圆C上的一个动点,点P在线段AM上,点N在线段CM上,且满足
AM
=2
AP
NP
AM
=0
,则点N的轨迹方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点A(-
3
,0),B(
3
,0)
,动点P(x,y)满足:||AP|-|BP||=2;
(1)求动点P的轨迹方程;
(2)直线mx-y+1=0与动点P的轨迹只有一个交点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的弦的中点为,则弦所在直线的方程是           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆x2+ky2=1的一个焦点是(0,2),则k的值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:.
(1)求椭圆C的离心率;
(2)设O为原点,若点A在直线,点B在椭圆C上,且,求线段AB长度的最小值.

查看答案和解析>>

同步练习册答案