精英家教网 > 高中数学 > 题目详情
1.已知复数$\frac{2+i}{a-i}$(其中a∈R,i为虚数单位)是纯虚数,则a+i的模为(  )
A.$\frac{5}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

分析 利用复数的运算法则、共轭复数的定义、纯虚数的定义、模的计算公式即可得出.

解答 解:复数$\frac{2+i}{a-i}$=$\frac{(2+i)(a+i)}{(a-i)(a+i)}$=$\frac{2a-1}{{a}^{2}+1}$+$\frac{a+2}{{a}^{2}+1}$i是纯虚数,∴$\frac{2a-1}{{a}^{2}+1}$=0,$\frac{a+2}{{a}^{2}+1}$≠0,
∴a=$\frac{1}{2}$,
则|a+i|=$|\frac{1}{2}+i|$=$\sqrt{(\frac{1}{2})^{2}+{1}^{2}}$=$\frac{\sqrt{5}}{2}$.
故选:C.

点评 本题考查了复数的运算法则、共轭复数的定义、纯虚数的定义、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.抛物线y2=4x的焦点到双曲线$\frac{{x}^{2}}{{3}^{\;}}$-y2=1的渐近线的距离是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若双曲线的顶点为椭圆2x2+y2=2长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是(  )
A.x2-y2=1B.y2-x2=1C.y2-x2=2D.x2-y2=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若a<b<0,那么下列不等式成立的是(  )
A.ab<b2B.a2<b2C.lg(-ab)<lg(-a2D.2${\;}^{\frac{1}{b}}$<2${\;}^{\frac{1}{a}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且对任意正整数n都有an2=S2n-1
(1)求数列{an}的通项公式;
(2)若数列$\{\frac{b_n}{{{a_{n-1}}}}\}$是首项为1,公比为3的等比数列,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,有一建筑物OP,为了测量它的高度,在地面上选一长度为40m的基线AB,若在点A处测得P点的仰角为30°,在B点处的仰角为45°,且∠AOB=30°,则建筑物的高度为(  )
A.20mB.20$\sqrt{2}$mC.20$\sqrt{3}$mD.40m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起如图乙所示的四棱锥P-OBCD,使得PC=$\sqrt{3}$,点E是线段PB上一动点.

(1)证明:DE和PC不可能垂直;
(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在圆内接四边形ABCD中,AB=2,AD=1,$\sqrt{3}$BC=$\sqrt{3}$BDcosα+CDsinβ,则四边形ABCD周长的取值范围为(3+$\sqrt{7}$,3+2$\sqrt{7}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数z=$\frac{(i-1)^{2}+2}{i+1}$的实部为(  )
A.-2B.-1C.1、D.0

查看答案和解析>>

同步练习册答案