精英家教网 > 高中数学 > 题目详情

设函数是定义域为的奇函数.
(1)求的值;
(2)若,且上的最小值为,求的值.
(3)若,试讨论函数上零点的个数情况。

(1) ;(2) (3) 当上有一个零点;当上无零点.

解析试题分析:(1) 由奇函数的性质求,可用特殊值或用恒等式对应项系数相等,如果0在奇函数的定义域内,则一定有,如果不在可任取定义域内两个相反数代入求.
(2)由求出,代入得,换元,注意自变量的取值范围,每设出一个子母都要把它取的范围缩到最小以有利于解题, 所以得到得到一个新的函数,利用二次函数函数单调性求最值方法得到,二次函数在区间上的最值在端点处或顶点处,遇到对称轴或区间含有待定的字母,则要按对称轴在不在区间内以及区间中点进行讨论.
(3)由函数零点判定转化为二次方程根的判定,即解个数情况,这个解起来比较麻烦,所以可以用函数单调性先来判定零点的个数,即上为增函数,也就是在这个区间上是一一映射, 时的每个值方程只有一个解.
试题解析:
(1)上的奇函数


(2)由(1)知
解得(舍)
上递增


所以令,
因为的对称轴为
Ⅰ当
解得(舍)
Ⅱ当
解得
综上:
(3)由(2)可得:

即求,零点个数情况
即求解个数情况
,
所以上为增函数
有最小值为
所以当方程在上有一根,即函数有一个零点
方程在上无根,即函数无零点
综上所述:当

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)当时,判断的奇偶性,并说明理由;
(Ⅱ)当时,若,求的值;
(Ⅲ)若,且对任何不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是实数,设为该函数的图象上的两点,且.
⑴指出函数的单调区间;
⑵若函数的图象在点处的切线互相垂直,且,求的最小值;
⑶若函数的图象在点处的切线重合,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数是定义域为的奇函数.
(Ⅰ)求的值,判断并证明当时,函数上的单调性;
(Ⅱ)已知,函数,求的值域;
(Ⅲ)已知,若对于时恒成立.请求出最大的整数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值
(2)判断并证明的单调性;
(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若非零函数对任意实数均有,且当
(1)求证:
(2)求证:为R上的减函数;
(3)当时, 对恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求该函数的定义域和值域;(2)判断函数的奇偶性,并加以证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义域为R的奇函数,,
⑴求实数的值;
⑵若在x∈[2,3]上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的定义域为 ,值域为,则称函数上的“四维方军”函数.
(1)设上的“四维方军”函数,求常数的值;
(2)问是否存在常数使函数是区间上的“四维方军”函数?若存在,求出的值,否则,请说明理由.

查看答案和解析>>

同步练习册答案