精英家教网 > 高中数学 > 题目详情
已知圆O:x2+y2=4.
(1)直线l1
3
x+y-2
3
=0与圆O相交于A、B两点,求|AB|;
(2)如图,设M(x1,y1),P(x2,y2)是圆O上的两个动点,点M关于原点的对称点为M,点M关于x轴的对称点为M2,如果直线=PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.
考点:平面向量的综合题
专题:综合题,直线与圆
分析:(1)先求出圆心(0,0)到直线
3
x+y-2
3
=0的距离,再利用弦长公式求得弦长AB的值.
(2)先求出M1和点M2的坐标,用两点式求直线PM1 和PM2的方程,根据方程求得他们在y轴上的截距m、n的值,计算mn的值,可得结论.
解答: 解:(1)由于圆心(0,0)到直线
3
x+y-2
3
=0的距离d=
3

圆的半径r=2,∴|AB|=2
4-3
=2.…(4分)
(2)由于M(x1,y1)、P(x2,y2)是圆O上的两个动点,则可得M1(-x1,-y1)、M2(x1,-y1),且x12+y12=4,x22+y22=4.…(8分)
根据PM1的方程为
y+y1
y2+y1
=
x+x1
x2+x1
,令x=0求得y=m=
x1y2-x2y1
x2+x1

根据PM2的方程为
y+y1
y2+y1
=
x-x1
x2-x1
,令x=0求得y=n=
-x1y2-x2y1
x2-x1
.…(12分)
∴mn=
x1y2-x2y1
x2+x1
-x1y2-x2y1
x2-x1
=
x22(4-x12)-x12(4-x22)
x22-x12
=4为定值.…(14分)
点评:本题主要考查直线和圆相交的性质,点到直线的距离公式,用两点式求直线的方程、求直线在y轴上的截距,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)(
32
×
3
6+(
2
)
4
3
-(-2008)0
(2)lg5lg20+(lg2)2
(3)(log32+log92)•(log43+log83)+(log33
1
2
2+ln
e
-lg1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为U=R,集合A={x|x2-x-2<0},B={x|x(3-x)>0},M={x|2x-a<0}.
(1)求A∩(∁UB);
(2)若(A∪B)⊆M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin2ωπx(ω>0)的图象在区间[0,
1
2
]上至少有两个最高点和两个最低点,则ω的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,[x]表示不超过x的最大整数,若函数f(x)=
[x]
2x
-a(x≠0)
有且仅有3个零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2是方程ax2+(b-1)x+1=0(a>0)的两个实根.
(1)若0<x1<2,x2-x1=2,求证:b<
1
4

(2)若x2-x1=2,x∈(x1,x2)时,求函数f(x)=-ax2-(b-1)x-1+2(x2-x)最大h(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的偶函数,且f(x)满足f(x+π)=f(x),当[0,
π
2
)时,f(x)=tanx,则f(
3
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)上一点C,过双曲线中心的直线交双曲线于A,B两点,记直线AC,BC的斜率分别为k1,k2,当
2
k1k2
+ln|k1|+ln|k2|
最小时,双曲线离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“若k>0,则方程x2+2x-k=0有实数根”,命题q:“若x+y≠8,则x≠2或y≠6”,则p∧q是
 
命题.(填“真”或“假”).

查看答案和解析>>

同步练习册答案