精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=|2x+1|﹣|x﹣2|.
(1)求不等式f(x)>2的解集;
(2)x∈R,使f(x)≥t2 t,求实数t的取值范围.

【答案】
(1)解:

,∴x<﹣5

,∴1<x<2

当x≥2,x+3>2,x>﹣1,∴x≥2

综上所述 {x|x>1或x<﹣5}


(2)解:由(1)得 ,若x∈R, 恒成立,

则只需

综上所述


【解析】(1)根据绝对值的代数意义,去掉函数f(x)=|2x+1|﹣|x﹣2|中的绝对值符号,求解不等式f(x)>2,(2)由(1)得出函数f(x)的最小值,若x∈R, 恒成立,只须 即可,求出实数t的取值范围.
【考点精析】根据题目的已知条件,利用函数的最值及其几何意义的相关知识可以得到问题的答案,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线上任意一点到直线的距离是它到点的距离的2倍.

(1) 求曲线的方程;

(2) 过点的直线与曲线交于两点.若的中点,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2是双曲线C1 =1(a>0,b>0)的左、右焦点,且F2是抛物线C2:y2=2px(p>0)的焦点,P是双曲线C1与抛物线C2在第一象限内的交点,线段PF2的中点为M,且|OM|= |F1F2|,其中O为坐标原点,则双曲线C1的离心率是(
A.2+
B.1+
C.2+
D.1+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A,B,C为的a、b、c所对的角,若
(1)求A;
(2)若 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax2(a∈R)
(Ⅰ) 讨论f(x)的单调性;
(Ⅱ) 若对于x∈(0,+∞),f(x)≤a﹣1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ex(x2+ax+b)有极值点x1 , x2(x1<x2),且f(x1)=x1 , 则关于x的方程f2(x)+(2+a)f(x)+a+b=0的不同实根个数为(
A.0
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三次函数f(x)=x3+bx2+cx+d(a,b,c∈R)过点(3,0),且函数f(x)在点(0,f(0))处的切线恰好是直线y=0.
(1)求函数f(x)的解析式;
(2)设函数g(x)=9x+m﹣1,若函数y=f(x)﹣g(x)在区间[﹣2,1]上有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某零售店近5个月的销售额和利润额资料如下表:

商店名称

销售额/千万元

3

5

6

7

9

利润额/百万元

2

3

3

4

5

(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;

(2)用最小二乘法计算利润额关于销售额的回归直线方程;

(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).

[参考公式:]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: + =1(a>b>0)的离心率为 ,直线x+y+ =0与椭圆E仅有一个公共点.
(1)求椭圆E的方程;
(2)直线l被圆O:x2+y2=3所截得的弦长为3,且与椭圆E交于A、B两点,求△ABO面积的最大值.

查看答案和解析>>

同步练习册答案