精英家教网 > 高中数学 > 题目详情

如图所示,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍且经过点M(3,1).平行于OM的直线l在y轴上的截距为m(m≠0),且交椭圆于A,B两不同点.
(1)求椭圆的方程;
(2)求m的取值范围;

解:(1)设椭圆的方程为+=1(a>b>0),?,所求椭圆的方程为+=1
(2)∵直线l∥OM且在y轴上的截距为m,
∴直线l方程为:y=x+m
?2x2+6mx+9m2-18=0
∵直线l交椭圆于A、B两点,
∴△=(6m)2-4×2(9m2-18)>0?-2<m<2
m的取值范围为-2<m<2,且m≠0.
分析:(1)设椭圆的方程为+=1(a>b>0),由,由此能够得到所求椭圆的方程.
(2)由题意可设直线l方程为:y=x+m,由整理得2x2+6mx+9m2-18=0,然后由根的判别式能够推导出m的取值范围.
点评:本题考查直线和椭圆的位置关系和基本应用,解题时要认真审题,仔细运算,避免不必要错误的发生.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于(  )
A、
2
2
B、
3
3
C、
6
3
D、
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍且经过点M(3,1).平行于OM的直线l在y轴上的截距为m(m≠0),且交椭圆于A,B两不同点.
(1)求椭圆的方程;
(2)求m的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍且经过点M(3,1).平行于OM的直线ly轴上的截距为m(m≠0),且交椭圆于AB两不同点.

(1)求椭圆的方程;

(2)求m的取值范围;

查看答案和解析>>

科目:高中数学 来源:2014届浙江效实中学高二上期末考试理科数学试卷(解析版) 题型:选择题

如图所示,已知椭圆的方程为 ,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于(   )

A.            B.             C.             D.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市十二县(市)高二(下)期中数学试卷(理科)(解析版) 题型:选择题

如图所示,已知椭圆的方程为,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案