精英家教网 > 高中数学 > 题目详情

【题目】f(x)g(x)分别是定义在R上的奇函数和偶函数,当x0时,f′(x)·g(x)f(x)·g′(x)0,且f(3)·g(3)0,则不等式f(x)·g(x)0的解集是( )

A. (3,0)∪(3,+∞)

B. (3,0)∪ (0,3)

C. (,-3)∪(3,+∞)

D. (,-3)∪(0,3)

【答案】D

【解析】

试题设Fx="f" xgx),当x0时,∵F′x=f′xgx+f xg′x)>0∴Fx)在当x0时为增函数.

∵F-x="f" -xg -x="-f" xg x=-Fx).

Fx)为(-∞00+∞)上的奇函数.

∴Fx)在(0)上亦为增函数.

已知f(3)·g(3)0,必有F-3=F3=0

构造如图的Fx)的图象,

可知Fx)<0的解集为x∈-∞-303).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将参加数学竞赛决赛的500名同学编号为:001,002,...,500,采用系统抽样的方法抽取一个容量为50的样本,且随机抽到的号码为005,这500名学生分别在三个考点考试,从001到200在第一考点,从201到365在第二考点,从366到500在第三考点,则第二考点被抽中的人数为( )

A. 15B. 16C. 17D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,点的中点.

(1)证明:直线平面

(2)求异面直线所成角的余弦值;

(3)求平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是圆上的一个动点,为圆心,线段的垂直平分线与直线的交点为

1)求点的轨迹的方程;

2)设轴的正半轴交于点,直线交于两点(不经过点),且,证明:直线经过定点,并写出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面是矩形,交于点.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)

今年十一黄金周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:

性别与对景区的服务是否满意  单位:名




总计

满意

50

30

80

不满意

10

20

30

总计

60

50

110

1)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?

2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;

3)根据以上列联表,问有多大把握认为游客性别与对景区的服务满意有关

注:

临界值表:

P()

0.05

0.025

0.010

0.005


3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P是椭圆上一点,MN分别是两圆(x+4)2y2=1(x-4)2y2=1上的点,则|PM|+|PN|的最小值、最大值分别为 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C经过M(13)N(42)P(1,﹣7)三点,且直线lxay10(aR)是圆C的一条对称轴,过点A(6a) 作圆C的一条切线,切点为B,则线段AB的长度为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K2=8.01,附表如下:

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

参照附表,得到的正确的结论是(  )

A. 有99%以上的把握认为“喜欢乡村音乐与性别有关”

B. 有99%以上的把握认为“喜欢乡村音乐与性别无关”

C. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别有关”

D. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别无关”

查看答案和解析>>

同步练习册答案