精英家教网 > 高中数学 > 题目详情

【题目】设向量,令函数,若函数的部分图象如图所示,且点的坐标为.

(1)求点的坐标;

(2)求函数的单调增区间及对称轴方程;

(3)若把方程的正实根从小到大依次排列为,求的值.

【答案】(1) (2) 单调递增区间为;对称轴方程为;(3)14800

【解析】

1)先求出,令求出点B的坐标;(2)利用复合函数的单调性原理求函数的单调增区间,利用三角函数的图像和性质求对称轴方程;(3)由(2)知对称轴方程为,所以,…,,即得解.

解:(1)

由已知,得

,得,∴.

时,,∴得坐标为

(2)单调递增区间,得

∴单调递增区间为

对称轴,得

∴对称轴方程为

(3)由,得

根据正弦函数图象的对称性,且由(2)知对称轴方程为

,…,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂新研发了一种产品,该产品每件成本为5元,将该产品按事先拟定的价格进行销售,得到如下数据:

单价(元)

8

8.2

8.4

8.6

8.8

9

销量(件)

90

84

83

80

75

68

1)求销量(件)关于单价(元)的线性回归方程

2)若单价定为10元,估计销量为多少件;

3)根据销量关于单价的线性回归方程,要使利润最大,应将价格定为多少?

参考公式:.参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是正三角形,EACD都垂直于平面ABC,且FBE的中点,

求证:(1平面ABC

2平面EDB.

3)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王每天自己开车上班,他在路上所用的时间(分钟)与道路的拥堵情况有关.小王在一年中随机记录了200次上班在路上所用的时间,其频数统计如下表,用频率近似代替概率.

(分钟)

15

20

25

30

频数(次)

50

50

60

40

(Ⅰ)求小王上班在路上所用时间的数学期望

(Ⅱ)若小王一周上班5天,每天的道路拥堵情况彼此独立,设一周内上班在路上所用时间不超过的天数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂生产线上随机抽取16件零件,测量其内径数据从小到大依次排列如下(单位:):1.12,1.15,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42,据此可估计该生产线上大约有25%的零件内径小于等于_____,大约有30%的零件内径大于_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调递增区间;

2)对于为任意实数,关于的方程恰好有两个不等实根,求实数的值;

3)在(2)的条件下,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b在区间 上取值,则函数 在R上有两个相异极值点的概率是( )
A.
B.1-
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(x0 , 0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足
(1)求出动点P的轨迹对应曲线C的标准方程;
(2)一条纵截距为2的直线l1与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程;
(3)直线l2:x=ty+1与曲线C交于A、B两点,E(1,0),试问:当t变化时,是否存在一直线l2 , 使△ABE的面积为 ?若存在,求出直线l2的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线.

1)若,求实数的值;

2)若,求实数的值.

查看答案和解析>>

同步练习册答案