精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数在定义域内单调递增,求实数的取值范围;

(2)对于任意的正实数,且,求证:.

【答案】(1);(2)见解析.

【解析】

(1)函数在定义域内单调递增,等价于 对于任意恒成立,即对于任意恒成立利用基本不等式求出函数最小值,从而可得结果;(2).原不等式等价于,可证明上递增.又因为,则从而可得结论.

1)依题意,导数 对于任意恒成立,即不等式

对于任意恒成立,即不等式对于任意恒成立;

又因为当(当时取等号),则,故实数的取值范围是.

(2)由于目标不等式中两个字母可以轮换,则不妨设..

欲证目标不等式

. (※)

根据(1)的结论知,当上递增.又因为,则

,则不等式(※)正确,故原目标不等式得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆:经过点,离心率为.

(1)求椭圆的方程;

(2)过点的直线交椭圆于两点,为椭圆的左焦点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医学院欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1到6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到数据资料见下表:

该院确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

(Ⅰ)求选取的2组数据恰好是不相邻的两个月的概率;

(Ⅱ)已知选取的是1月与6月的两组数据.

(1)请根据2到5月份的数据,求出就诊人数关于昼夜温差的线性回归方程;

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该协会所得线性回归方程是否理想?

(参考公式和数据:

)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以短轴端点和焦点为顶点的四边形的周长为.

(Ⅰ)求椭圆的标准方程及焦点坐标.

(Ⅱ)过椭圆的右焦点作轴的垂线,交椭圆于两点,过椭圆上不同于点的任意一点,作直线分别交轴于两点.证明:点的横坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)正方体的棱长扩大到原来的n倍,则其表面积扩大到原来的______倍,体积扩大到原来的______倍;

2)球的半径扩大到原来的n倍,则其表面积扩大到原来的_____倍,体积扩大到原来的_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面,底面为矩形,分别为线段上一点,且.

(1)证明:

(2)证明:平面,并求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分

布直方图:

(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;

(2)若从该运动员投篮命中时,他到篮筐中心的水平距离为2到5米的这三组中,用分层抽样的方法抽取7次成绩(单位:米,运动员投篮命中时,他到篮筐中心的水平距离越远越好),并从抽到的这7次成绩中随机抽取2次.规定:这2次成绩均来自到篮筐中心的水平距离为4到5米的这一组,记 1分,否则记0分.求该运动员得1分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:

为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为.

(1)求乙离子残留百分比直方图中的值;

(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).

查看答案和解析>>

同步练习册答案