精英家教网 > 高中数学 > 题目详情

设函数,其中为常数。
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)若函数有极值点,求的取值范围及的极值点。

(Ⅰ)函数在定义域上单调递增;(Ⅱ)当且仅当有极值点; 当时,有惟一最小值点;当时,有一个极大值点和一个极小值点

解析试题分析:(Ⅰ)函数在定义域上的单调性的方法,一是利用定义,二是利用导数,此题既有代数函数又有对数函数,显然利用导数判断,只需对求导,判断的符号即可;(Ⅱ)求的极值,只需对求导即可,利用导数求函数的极值一般分为四个步骤:①确定函数的定义域;②求出;③令,列表;④确定函数的极值.此题由(Ⅰ)得,当时,函数无极值点,只需讨论的情况,解的根,讨论在范围内根的个数,从而确定的取值范围及的极值点,值得注意的是,求出的根时,忽略讨论根是否在定义域内,而出错.
试题解析:(Ⅰ)由题意知,的定义域为  ∴当时,,函数在定义域上单调递增.
(Ⅱ)①由(Ⅰ)得,当时,函数无极值点,②时,有两个相同的解,但当时,,当时,时,函数上无极值点,③当时,有两个不同解,时,,而,此时 在定义域上的变化情况如下表:











练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)求证:当时,对所有的都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数.
(1)若函数上单调递增,求实数的取值范围.
(2)记函数,若的最小值是,求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)设函数
(1)求的周期和对称中心;
(2)求上值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求的延长线上,的延长线上,且对角线点.已知米,米。

(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当的长度分别是多少时,花坛的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,曲线在点处的切线与直线垂直.
(1)求的值;
(2) 若恒成立,求的范围.
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1) 当时,求的单调区间;
(2) 若当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若处的切线方程;
(2)若在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是实数,函数,分别是的导函数,若在区间上恒成立,则称在区间上单调性一致.
(Ⅰ)设,若函数在区间上单调性一致,求实数的取值范围;
(Ⅱ)设,若函数在以为端点的开区间上单调性一致,求的最大值.

查看答案和解析>>

同步练习册答案