精英家教网 > 高中数学 > 题目详情

设函数的定义域为,对于任意实数恒有,并且当时,

 (1)判断函数上的单调性;

(2)若,求不等式的解集

(1)上是递减的(2)


解析:

(1)任取,则,此时。由于时,

 

  …………………………………6分

因此上是递减的…………………………………7分

(2)由于对任意实数均成立,故不等式化为

…………………………………9分

 则

不等式又可化为…………………………………10分

上是减函数,因此 即解集为………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数的定义域为R,若存在常数,使对一切实数均成立,则称为“倍约束函数”.现给出下列函数:①;②;③;④;⑤是定义在实数集R上的奇函数,且对一切均有.其中是“倍约束函数”的序号是

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省瓦房店市五校高二上学期竞赛数学理卷 题型:解答题

.(本小题满分12分)设函数的定义域为R,当时,,且对任意实数,都有成立,数列满足
(1)求的值;
(2)若不等式对一切均成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省高三上学期第二次段考数学试卷(解析版) 题型:解答题

设函数的定义域为,对任意的实数都有;当时,,且.(1)判断并证明上的单调性;

(2)若数列满足:,且,证明:对任意的

 

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省瓦房店市五校高二上学期竞赛数学理卷 题型:解答题

.(本小题满分12分)设函数的定义域为R,当时,,且对任意实数,都有成立,数列满足

(1)求的值;

(2)若不等式对一切均成立,求的最大值.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010年江西省高三上学期开学模拟考试理科数学卷 题型:解答题

设函数的定义域为(0,+∞),且对任意正实数x,y都有f(x·y)=f(x)+f(y)恒成立,已知f(2)=1且x>1时f(x)>0.

(1)求

(2)判断y=f(x)在(0,+ ∞)上的单调性;

(3)一个各项均为正数的数列其中sn是数列的前n项和,求

 

查看答案和解析>>

同步练习册答案