精英家教网 > 高中数学 > 题目详情

已知函数的定义域为,当时,,且对于任意的,恒有成立.
(1)求
(2)证明:函数上单调递增;
(3)当时,
①解不等式
②求函数上的值域.

(1)  (2) 设,则 ∴函数上单调递增(3) ①

解析试题分析:(1)∵对于任意的恒有成立.
∴令,得:2分
(2)设,则      4分

7分
∴函数上单调递增             8分
(3)①∵对于任意的恒有成立.
     
又∵
等价于,    10分
解得:    12分
∴所求不等式的解集为

由①得:
由(2)得:函数上单调递增
故函数上单调递增      13分
  15分
∴函数上的值域为   16分
考点:抽象函数单调性及值域
点评:第一问抽象函数求值关键是对自变量合理赋值,第二问判定其单调性需通过定义:在下比较的大小关系,第三问解不等式,求函数值域都需要结合单调性将抽象函数转化为具体函数,利用单调性找到最值点的位置

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数上的增函数,
(Ⅰ)若,求证:
(Ⅱ)判断(Ⅰ)中命题的逆命题是否成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当a=l时,求函数的极值;
(2)当a2时,讨论函数的单调性;
(3)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求
实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若是偶函数,在定义域上恒成立,求实数的取值范围;
(2)当时,令,问是否存在实数,使上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)讨论的奇偶性;
(2)当时,求的单调区间;
(3)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处的切线方程为.
(1)求函数的解析式;
(2)若关于的方程恰有两个不同的实根,求实数的值 ;
(3)数列满足,求的整数部分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上的值域为
(1)求的值;
(2)若关于的函数在区间上为单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
①当时,求函数在上的最大值和最小值;
②讨论函数的单调性;
③若函数处取得极值,不等式恒成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案