精英家教网 > 高中数学 > 题目详情
9.求适合下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别是(0,5),(0,-5),椭圆上一点P到两焦点的距离之和为26;
(2)焦点在坐标轴上,且经过A($\sqrt{3}$,-2)和B(-2$\sqrt{3}$,1)两点.

分析 (1)利用椭圆的定义求出a,可得b,即可求出椭圆的方程;
(2)设出椭圆方程,代入点的坐标,建立方程组,即可求得椭圆的标准方程.

解答 解:(1)由题意,2a=26,c=5,∴a=13,b=12,
∴椭圆的标准方程:$\frac{{y}^{2}}{169}+\frac{{x}^{2}}{144}$=1;
(2)依题意,可设椭圆的方程为mx2+ny2=1(m>0,n>0),则
点A($\sqrt{3}$,-2)和B(-2$\sqrt{3}$,1)代入可得$\left\{\begin{array}{l}{3m+4n=1}\\{12m+n=1}\end{array}\right.$,
∴m=$\frac{1}{15}$,n=$\frac{1}{5}$,
∴椭圆的标准方程为$\frac{{x}^{2}}{15}+\frac{{y}^{2}}{5}$=1.

点评 本题考查椭圆的标准方程,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}是等差数列,前n项和为 Sn且满足a3-a1=4,S3=12.
(1)求数列{an}的通项公式; 
(2)设bn=an•2n-1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{5}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆心C在抛物线y2=4x上且与准线相切,则圆C恒过定点(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某产品近5年的广告费支出x(百万元)与产品销售额y(百万元)的数据如表:
x12345
y50607080100
(Ⅰ)求y关于x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)用所求回归方程预测该产品广告费支出6百万元的产品销售额y.
附:线性回归方程y=bx+a中,$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一个直角梯形上底、下底和高之比为$2:4:\sqrt{5}$,将此直角梯形以垂直于底的腰为轴旋转一周形成一个圆台,求这个圆台上底面积、下底面积和侧面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列四个命题:
①“若 xy=0,则x=0且y=0”的逆否命题;
②“若m>2,则不等式x2-2x+m>0的解集为R”;
③若F1、F2是定点,|F1F2|=7,动点M满足|MF1|+|MF2|=7,则M的轨迹是椭圆;
④若{a,b,c}为空间的一组基底,则{a+b,b+c,c+a}构成空间的另一组基底;
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟到达N处后,又测得灯塔在货轮的东北方向,则货轮的速度为(  )
A.20($\sqrt{2}$+$\sqrt{6}$)海里/时B.20($\sqrt{6}$-$\sqrt{2}$)海里/时C.20($\sqrt{3}$+$\sqrt{6}$)海里/时D.20($\sqrt{6}$-$\sqrt{3}$)海里/时

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a=($\frac{1}{9}$)${\;}^{\frac{1}{3}}$,b=log93,c=3${\;}^{\frac{1}{9}}$,则a,b,c的大小关系是(  )
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

查看答案和解析>>

同步练习册答案