精英家教网 > 高中数学 > 题目详情
17.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的离心率$e∈[{\sqrt{2},2}]$,则该双曲线的渐近线与实轴所成角的取值范围是$\frac{π}{4}$≤θ≤$\frac{π}{3}$.

分析 设经过一、三象限的渐近线与实轴所成的角为θ,则tanθ=$\frac{b}{a}$,根据2≤$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}$≤4,求出$\frac{b}{a}$的范围,即得tanθ的范围,从而得到θ 的范围.

解答 解:设经过一、三象限的渐近线与实轴所成的角为θ,则tanθ=$\frac{b}{a}$.
由题意可得2≤$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}$≤4,
∴1≤$\frac{b}{a}$≤$\sqrt{3}$,即 1≤tanθ≤$\sqrt{3}$,∴$\frac{π}{4}$≤θ≤$\frac{π}{3}$,
故答案为:$\frac{π}{4}$≤θ≤$\frac{π}{3}$.

点评 本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求出1≤$\frac{b}{a}$≤$\sqrt{3}$,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=2x+x-4的零点x0∈(a,b),且b-a=1,a,b∈N,则a+b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列4个命题:
(1)若xy=1,则x,y互为倒数的逆命题;
(2)面积相等的三角形全等的否命题;
(3)若m≤1,则x2-2x+m=0有实数解的逆否命题;
(4)若xy=0,则x=0或y=0的否定.
其中真命题(1)(2)(3)(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设U=R,M={y|y=2x+1,-$\frac{1}{2}$≤x≤$\frac{1}{2}$},N={x|y=lg(x2+3x)},则(∁UM)∩N=(  )
A.(-∞,-3]∪(2,+∞)B.(-∞,-3)∪(0,+∞)C.(-∞,-3)∪(2,+∞)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.数列{an}中,满足a1+a2+…+an=3n-1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{3}{4}(1-\frac{1}{{3}^{n}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中正确的是(  )
A.若p∨q为真命题,则p∧q为真命题.
B.“x=5”是“x2-4x-5=0”的必要不充分条件.
C.命题“?x∈R,x2+x-1<0”的否定为:“?x∈R,x2+x-1≥0”.
D.命题“已知A,B为一个三角形两内角,若A=B,则sinA=sinB”的否命题为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列结论:
(1)函数f(x)=tanx有无数个零点;
(2)集合A={x|y=2x+1},集合 B={x|y=x2+x+1}则A∩B={(0,1),(1,3)};
(3)函数$f(x)=\frac{1}{2}sinx+\frac{1}{2}|{sinx}|$的值域是[-1,1];
(4)函数$f(x)=2sin(2x+\frac{π}{3})$的图象的一个对称中心为$(\frac{π}{3},0)$;
(5)已知函数f(x)=2cosx,若存在实数x1,x2,使得对任意的实数x都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为2π.
其中结论正确的序号是(1)(4)(把你认为结论正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设$\overrightarrow{a}$,$\overrightarrow{b}$,是任意的非零平面向量,且相互不共线,则下列正确的是(  )
A.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,且$\overrightarrow{a}$,$\overrightarrow{b}$同向,则$\overrightarrow{a}$>$\overrightarrow{b}$
B.|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|
C.|$\overrightarrow{a}$•$\overrightarrow{b}$|≥|$\overrightarrow{a}$||$\overrightarrow{b}$|
D.|$\overrightarrow{a}$-$\overrightarrow{b}$|≤|$\overrightarrow{a}$|-|$\overrightarrow{b}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=ex(2x-1)-ax+a(a∈R),e为自然对数的底数.
(1)当a=1时,求函数f(x)的单调区间;
(2)若存在实数x∈(1,+∞),满足f(x)<0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案