精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,点的中点.

(1)求证: 平面

(2)若平面 求二面角的大小.

【答案】(1)见解析(2)

【解析】试题分析:(1连接,交于点,连接,根据三角形中位线得到,进而得到线面平行;(2)根据二面角的定义可证得是二面角的平面角,在三角形BD中求解即可。

解析:

1连接,交于点连接.

因为是三棱柱,所有四边形为平行四边形.

所以的中点.

因为的中点,所以的中位线,

所以

平面 平面,所以平面.

(2)是二面角的平面角.

事实上,因为 ,所以.

中, 底边的中点,所以.

因为

所以平面

因为平面 平面

所以

所以是二面角的平面角.

在直角三角形 中,

所以 为等腰直角三角形,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)设函数求函数在区间上的值域

2)定义表示中较小者设函数 .

①求函数的单调区间及最值

②若关于的方程有两个不同的实根求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在 的展开式中,第6项为常数项.
(Ⅰ)求含x2的项的系数;
(Ⅱ)求展开式中所有的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体中, 平面 .

求四面体的四个面的面积中,最大的面积是多少?

Ⅱ)证明:在线段上存在点,使得,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:关于x的方程x2+ax+2=0无实根,命题q:函数f(x)=logax在(0,+∞)上单调递增,若“p∧q”为假命题,“p∨q”真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,一块形状为四棱柱的木料, 分别为的中点.

(1)要经过将木料锯开,在木料上底面内应怎样画线?请说明理由;

(2)若底面是边长为2的菱形, 平面求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对任意实数均有,其中常数为负数,且在区间上有表达式.

(1)写出上的表达式,并写出函数上的单调区间(不用过程,直接写出即可);

(2)求出上的最小值与最大值,并求出相应的自变量的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学参加学校自主招生3门课程的考试,假设该同学第一门课程取得优秀成绩概率为 ,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为

ξ

0

1

2

3

p

x

y

(Ⅰ)求该生至少有1门课程取得优秀成绩的概率及求p,q的值;
(Ⅱ)求该生取得优秀成绩课程门数的数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,且过点 是椭圆 上异于长轴端点的两点.
(1)求椭圆 的方程;
(2)已知直线 ,且 ,垂足为 ,垂足为 ,若 ,且 的面积是 面积的5倍,求 面积的最大值.

查看答案和解析>>

同步练习册答案