精英家教网 > 高中数学 > 题目详情
已知:如图,P是⊙O的直径AB延长线上的一点,割线PCD交⊙O于C、D两点,弦DF与直线AB垂直,H为垂足,CF与AB交于点E.
(1)求证:PA•PB=PO•PE;
(2)若DE⊥CF,∠P=15°,⊙O的半径等于2,求弦CF的长.
考点:与圆有关的比例线段
专题:
分析:(1)根据切割线定理,PD•PC=PA•PB,所以原题可转化为证明PO•PE=PD•PC,即证△DPO∽△EPC,从而找出比例线段,得到等积式;
(2)由图可知,CF=CE+EF,而由垂径定理可知DE=EF,所以只要求出DE和CE即可,欲求CE,可通过证明△DHO∽△DEC,运用比例线段进行求解,至于DE,则根据题中给出的已知条件可说明三角形DHE为等腰直角三角形,而DH和HE则可通过勾股定理求出,从而求出CF的值.
解答: (1)证明:连接OD.
∵AB是⊙O的直径,且DF⊥AB于D点H,
AD
=
AF
=
1
2
DF
.∴∠AOD=∠DCF.∴∠POD=∠PCE.
∵∠DPO=∠EPC,∴△DPO∽△EPC.
PD
PE
=
PO
PC
.即PO•PE=PD•PC.
又PD•PC=PA•PB,∴PA•PB=PO•PE.
(2)解:由(1)知:AB是弦DF的垂直平分线,
∴DE=EF.∴∠DEA=∠FEA.
∵DE⊥CF,∴∠DEA=∠FEA=45°.∴∠FEA=∠CEP=45°.
∵∠P=15°,∴∠AOD=60°.
在Rt△DHO中∵∠AOD=60°,OD=2,
∴OH=1,DH=
3

∵△DHE是等腰直角三角形,∴DE=
6

又∵∠AOD=∠DCF,∠DHO=∠DEC=90°,
∴△DHO∽△DEC.
DH
DE
=
HO
EC
,∴
3
6
=
1
EC
.∴EC=
2

∴CF=CE+EF=CE+DE=
2
+
6
点评:此题考查比较全面,相似三角形的判定和判定、勾股定理、以及垂径定理,难易程度适中.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若不等式
x2+1+m
x2+m
1+m
m
(x∈R)对任意实数x都成立,则正实数m取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,O为坐标原点,点A(2,0),将向量
OA
绕点O按逆时针方向旋转
π
3
后得向量
OB
,若向量
a
满足|
a
-
OA
-
OB
|=1
,则|
a
|
的最大值是(  )
A、2
3
-1
B、2
3
+1
C、3
D、
6
+
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)经过点(1,20),其导函数f′(x)=4x-22.数列{an}的前n项和为Sn,点(n,Sn)(n∈N+)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{|an|}前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是的⊙O直径,CB与⊙O相切于B,E为线段CB上一点,连接AC、AE分别交⊙O于D、G两点,连接DG交CB于点F.
(Ⅰ)求证:C、D、G、E四点共圆.
(Ⅱ)若F为EB的三等分点且靠近E,EG=1,GA=3,求线段CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC的三条角平分线交于点O,过点O作OE⊥BC于点E,求证:∠BOD=∠COE.

查看答案和解析>>

科目:高中数学 来源: 题型:

请设计算法框图,要求输入自变量x的值,输出函数f(x)=
-x+1,x≥0
x+3,x<0
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项的和Sn与an的关系是Sn=-an+1-
1
2n
,n∈N*
(Ⅰ)求a1,a2a3并归纳出数列{an}的通项(不需证明);
(Ⅱ)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,AC=BC=2,
CO
=x
CA
+y
CB
,(其中x+y=1),函数f(λ)=|
CA
CB
|的最小值为
3
,则|
CO
|的最小值为
 

查看答案和解析>>

同步练习册答案