精英家教网 > 高中数学 > 题目详情
1.在平面直角坐标系xOy中,已知圆C:x2+y2-6x+5=0,点A,B在圆上,且AB=2$\sqrt{3}$则|$\overrightarrow{OA}+\overrightarrow{OB}$|的取值范围是[4,8].

分析 本题可利用AB中点M去研究,先通过坐标关系,将$\overrightarrow{OA}+\overrightarrow{OB}$转化为$\overrightarrow{OM}$,根据AB=2$\sqrt{3}$得到M点的轨迹,由图形的几何特征,求出$\overrightarrow{OM}$模的最值,得到本题答案.

解答 解:设A(x1,y1),B(x2,y2),AB中点M(x′,y′).
∵x′=$\frac{{x}_{1}+{x}_{2}}{2}$,y′=$\frac{{y}_{1}+{y}_{2}}{2}$
∴$\overrightarrow{OA}+\overrightarrow{OB}$=(x1+x2,y1+y2)=2$\overrightarrow{OM}$,
∵圆C:x2+y2-6x+5=0,
∴(x-3)2+y2=4,圆心C(3,0),半径CA=2.
∵点A,B在圆C上,AB=2$\sqrt{3}$,
∴CA2-CM2=($\frac{1}{2}$AB)2
即CM=1.
点M在以C为圆心,半径r=1的圆上.
∴OM≥OC-r=3-1=2,OM≤OC+r=3+1=4.
∴2≤|$\overrightarrow{OM}$|≤4,
∴4≤|$\overrightarrow{OA}+\overrightarrow{OB}$|≤8.
故答案为:[4,8].

点评 本题考查了数形结合思想和函数方程的思想,可利用AB中点M去研究,先通过坐标关系,将$\overrightarrow{OA}+\overrightarrow{OB}$转化为$\overrightarrow{OM}$,根据AB=2$\sqrt{3}$得到M点的轨迹,由图形的几何特征,求出$\overrightarrow{OM}$模的最值,得到本题答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.直线$y=-\sqrt{3}x+1$的倾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值.即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米--75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从市区今年9月每天的PM2.5监测数据中,按系统抽样方法抽取了某6天的数据作为样本,其监测值如茎叶图所示.
(l)根据样本数据估计今年9月份该市区每天PM2.5的平均值和方差;
(2)从所抽样的6天中任意抽取三天,记ξ表示抽取的三天中空气质量为二级的天数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定点O(0,0),A(3,0),动点P到定点O距离与到定点A的距离的比值是$\frac{1}{\sqrt{λ}}$.
(Ⅰ)求动点P的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当λ=4时,记动点P的轨迹为曲线D.F,G是曲线D上不同的两点,对于定点Q(-3,0),有|QF|•|QG|=4.试问无论F,G两点的位置怎样,直线FG能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设复数z=3+i,且iz=a+bi(a,b∈R),则a+b等于(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}+cosα}\\{y=8+sinα}\end{array}\right.$(α为参数);若以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,直线C2的极坐标方程为ρsin(θ-$\frac{π}{3}$)=$\frac{1}{2}$.
(1)求曲线C1和C2的直角坐标方程;
(2)在C2上是否存在点P,过P作C1的两条切线,切点为A,B,使得△ABP为等边三角形?若存在求出P点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C的极坐标是ρ=4,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,又直线l的参数方程为$\left\{\begin{array}{l}{x=2+2t}\\{y=-5+t}\end{array}\right.$(t为参数).
(1)写出曲线C与直线l的普通方程;
(2)设曲线C经过伸缩变换$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{\sqrt{3}}{2}y}\end{array}\right.$得到曲线C′,在曲线上找一点,使这一点到直线l的距离最短,并求出该点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若“任意x∈[0,$\frac{π}{3}$],tanx≤m”是真命题,则实数m的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合$M=\left\{{x|\frac{3}{x^2}<1}\right\},N=\left\{{n|1≤{2^n}≤13且n∈Z}\right\}$,则N∩M=(  )
A.{2,3}B.{3}C.$[{0,\sqrt{3}})$D.[2,+∞)

查看答案和解析>>

同步练习册答案