精英家教网 > 高中数学 > 题目详情

【题目】已知Sn为等差数列{an}的前n项和,S6=51,a5=13.
(1)求数列{an}的通项公式;
(2)数列{bn}的通项公式是bn= , 求数列{bn}的前n项和Sn

【答案】【解答】(1)设等差数列{an}的公差为d,则
∵S6=51,
×(a1+a6)=51,
∴a1+a6=17,
∴a2+a5=17,
∵a5=13,∴a2=4,
∴d=3,
∴an=a2+3(n﹣2)=3n﹣2;
(2)bn==﹣28n﹣1
∴数列{bn}的前n项和Sn=(8n﹣1).
【解析】(1)设等差数列{an}的公差为d,利用S6=51,求出a1+a6=17,可得a2+a5=17,从而求出a2=4,可得公差,即可确定数列{an}的通项公式;
(2)求出数列{bn}的通项公式,利用等比数列的求和公式,可得结论.
【考点精析】解答此题的关键在于理解等比数列的前n项和公式的相关知识,掌握前项和公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】计算机在数据处理时使用的是二进制,例如十进制的1、2、3、4在二进制分别表示为1、10、11、100.下面是某同学设计的将二进制数11111化为十进制数的一个流程图,则判断框内应填入的条件是(
A.i>4
B.i≤4
C.i>5
D.i≤5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an},等比数列{bn}满足:a1b1=1,a2b2,2a3b3=1.

(1)求数列{an},{bn}的通项公式;

(2)cnanbn求数列{cn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2(lga2)xlgbf(1)=2,当x∈Rf(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x2-4x+3|.

(1)作出函数f(x)的图象;

(2)求函数f(x)的单调区间,并指出其单调性;

(3)求集合M={m|使方程f(x)=m有四个不相等的实根}.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=logax(a>0,a≠1),设数列f(a1),f(a2),f(a3),…,f(an)…是首项为4,公差为2的等差数列.
(I)设a为常数,求证:{an}成等比数列;
(II)设bn=anf(an),数列{bn}前n项和是Sn , 当时,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

⑴若函数的图象经过点,求实数的值.

⑵当时,函数的最小值为1,求当时,函数最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 fx)是定义在 R上的偶函数,当 x≥0 时,fx)=x2+ax+b 的部分图象如图所示:

1)求 fx)的解析式;

2)在网格上将 fx)的图象补充完整,并根据 fx)图象写出不等式 fx≥1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面AA1B1B⊥底面ABC,△ABC和△ABB1都是边长为2的正三角形.
(Ⅰ)过B1作出三棱柱的截面,使截面垂直于AB,并证明;
(Ⅱ)求AC1与平面BCC1B1所成角的正弦值.

查看答案和解析>>

同步练习册答案