精英家教网 > 高中数学 > 题目详情
3.下列命题正确的是①③.(写出所有正确命题的序号)
①已知a,b∈R,“a>1且b>1”是“ab>1”的充分条件;
②已知平面向量$\overrightarrow a,\overrightarrow b$,“$|\overrightarrow a|>1$且$|\overrightarrow b|>1$”是“$|\overrightarrow a+\overrightarrow b|>1$”的必要不充分条件;
③已知a,b∈R,“a2+b2≥1”是“|a|+|b|≥1”的充分不必要条件;
④命题P:“?x0∈R,使${e^{x_0}}≥{x_0}+1$且lnx0≤x0-1”的否定为¬p:“?x∈R,都有ex<x+1且lnx>x-1”

分析 ①,由不等式的性质判定;
②,利用向量的加法法则判定;
③,利用单位圆判定;
④,“且”的否定是“或”

解答 解;对于①,已知a,b∈R,“a>1且b>1”是“ab>1”的充分条件,正确;
对于②,向量的加法法则可知,“$|\overrightarrow a|>1$且$|\overrightarrow b|>1$”不能得到“$|\overrightarrow a+\overrightarrow b|>1$”;“$|\overrightarrow a+\overrightarrow b|>1$”,不能得到,“$|\overrightarrow a|>1$且$|\overrightarrow b|>1$”,故错;
对于③,如图在单位圆x2+y2=1上或圆外任取一点P(a,b),满足“a2+b2≥1”,根据三角形两边之和大于第三边,一定有“|a|+|b|≥1”,在单位圆内任取一点M(a,b),满足“|a|+|b|≥1”,但不满足,“a2+b2≥1”,故正确;


 
对于④,命题P:“?x0∈R,使${e^{x_0}}≥{x_0}+1$且lnx0≤x0-1”的否定为¬p:“?x∈R,都有ex<x+1或lnx>x-1”,故错.
故答案为:①③

点评 本题考查了命题真假的判定,涉及到充要条件、命题的四种形式等基础知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax-k的图象过点(1,3)和(0,2),则函数f(x)的解析式为f(x)=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.z=$\frac{5i}{1-2i}$(i是虚数单位),则z为(  )
A.2-iB.2+iC.-2-iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC,中,AB=2,cosC=$\frac{2\sqrt{7}}{7}$,D是AC上一点,AD=2DC,且cos∠DBC=$\frac{5\sqrt{7}}{14}$.则 $\overrightarrow{AD}$•$\overrightarrow{CB}$=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对于给定的实数k>0,函数f(x)=$\frac{k}{x}$的图象上总存在点C,使得以C为圆心,1为半径的圆上有两个不同的点到原点O的距离为1,则k的取值范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sinx.
(1)当x>0时,证明:${f^'}(x)>1-\frac{x^2}{2}$;
(2)若当$x∈(0,\frac{π}{2})$时,$f(x)+\frac{f(x)}{{{f^'}(x)}}>ax$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a,b∈R,则“a+b>4”是“a>1且b>3”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(a2-3a+3)ax是指数函数,
(1)求f(x)的表达式;
(2)判断F(x)=f(x)-f(-x)的奇偶性,并加以证明
(3)解不等式:loga(1-x)>loga(x+2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知全集U={1,3,5,7,9},集合A={1,5},B={3,5},则∁UA∩∁UB=(  )
A.{7,9}B.{1,3,7,9}C.{5}D.{1,3,5}

查看答案和解析>>

同步练习册答案