精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围;
(2)解关于x的方程f(x)=|f′(x)|; ?
(3)设函数g(x)=,求g(x)在x∈[2,4]时的最小值.

(1)a(2) x=1或x=-(1+2a) (3)4a+5

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx+ax+1,a∈R.
(1)求f(x)在x=1处的切线方程.
(2)若不等式f(x)≤0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)利用(2)的结论证明:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(1)求a
(2)求函数f(x)的单调区间;
(3)若直线yb与函数yf(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)若,求曲线处的切线方程;
(2)若对任意的,都有恒成立,求的最小值;
(3)设,若为曲线的两个不同点,满足,且,使得曲线处的切线与直线AB平行,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

f(x)=a(x-5)2+6ln x,其中a∈R,曲线yf(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x3x2+6xa.
(1)对于任意实数xf′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像在点处的切线斜率为10.
(1)求实数的值;
(2)判断方程根的个数,并证明你的结论;
(21)探究: 是否存在这样的点,使得曲线在该点附近的左、右两部分分别位于曲线在该点处切线的两侧? 若存在,求出点A的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(Ⅰ)若,求函数的极值点;
(Ⅱ)若在区间内单调递增,求实数的取值范围.

查看答案和解析>>

同步练习册答案