精英家教网 > 高中数学 > 题目详情

【题目】随着互联网+交通模式的迅猛发展,共享自行车在很多城市相继出现.某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:

用户编号

评分

用户编号

评分

用户编号

评分

用户编号

评分

01

78

11

88

21

79

31

93

02

73

12

86

22

83

32

78

03

81

13

95

23

72

33

75

04

92

14

76

24

74

34

81

05

95

15

97

25

91

35

84

06

85

16

78

26

66

36

77

07

79

17

88

27

80

37

81

08

84

18

82

28

83

38

76

09

63

19

76

29

74

39

85

10

86

20

89

30

82

40

89

现用随机数法读取用户编号,且从第2行第6列的数开始向右读,从40名用户中抽取容量为10的样本.(下面是随机数表第1行第至第5行)

95 33 95 22 00 18 74 72 00 18 38 79 58 69 32

81 76 80 16 92 04 80 44 25 39 91 03 69 79 83

54 31 62 27 32 94 07 53 89 35 96 35 23 79 18

05 98 90 07 35 46 40 62 98 80 54 97 20 56 95

1)请你列出抽到的10个样本的评分数据;

2)计算所抽到的10个样本的均值和方差

3)在(2)条件下,若用户的满意度评分在之间,则满意度等级为”.试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为的用户所占的百分比是多少?(参考数据:

【答案】1)见解析;(2)均值,方差;(3

【解析】

1)通过系统抽样得到抽取的样本编号,从而得到样本的评分数据.

2)由(1)中的样本评分数据利用平均数和方差公式求解.

3)由(2)得到满意度等级, 得到由(1)中容量为10的样本评分在之间的人数,然后求得百分比.

1)通过系统抽样抽取的样本编号为:01200410363516222940

则样本的评分数据为:78899286778478837489.

2)由(1)中的样本评分数据可得

则有

所以均值,方差.

3)由题意知评分在之间满意度等级为A

由(1)中容量为10的样本评分在之间有5人,

则该地区满意度等级为A的用户所占的百分比约为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为为参数,以坐标原点O为极点,以x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为

求直线l的普通方程及曲线C的直角坐标方程;

若直线l与曲线C交于AB两点,求线段AB的中点P到坐标原点O的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列各条件写出直线方程,并化为一般式.

1)斜率是,经过点

2)经过点,与直线垂直;

3)在轴和轴上的截距分别为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是抛物线的焦点,点,分别在抛物线和圆的实线部分上运动,且总是平行于轴,则周长的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中).

1)判断函数的奇偶性并证明;

2)若,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).

1)求这60天每天包裹数量的平均值和中位数;

2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?

3)小明打算将四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过,求他支付的快递费为45元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两队参加听歌猜歌名游戏,每队.随机播放一首歌曲, 参赛者开始抢答,每人只有一次抢答机会,答对者为本队赢得一分,答错得零分, 假设甲队中每人答对的概率均为,乙队中人答对的概率分别为,且各人回答正确与否相互之间没有影响.

(1)若比赛前随机从两队的个选手中抽取两名选手进行示范,求抽到的两名选手在同一个队的概率;

(2)表示甲队的总得分,求随机变量的分布列和数学期望;

(3)求两队得分之和大于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱侧棱和底面垂直的棱柱中,平面侧面,线段AC、上分别有一点E、F且满足

求证:

求点E到直线的距离;

求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中为自然对数的底数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)若对任意,不等式恒成立,求实数的取值范围;

(Ⅲ)试探究当时,方程的解的个数,并说明理由.

查看答案和解析>>

同步练习册答案