分析 根据不等式的性质结合充要条件的定义进行求解即可.
解答 解:若y=(a2-1)x2+(a-1)x+3>0,
则当a2-1=0,即a=1或a=-1,
当a=1时,不等式等价为3>0,满足条件.
当a=-1时,不等式等价为-2x+3>0,x<$\frac{3}{2}$,不满足条件.
当a≠±1时,
要使y>0,则$\left\{\begin{array}{l}{{a}^{2}-1>0}\\{△=(a-1)^{2}-12({a}^{2}-1)<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{a>1或a<-1}\\{11{a}^{2}+2a-13>0}\end{array}\right.$,
得$\left\{\begin{array}{l}{a>1或a<1}\\{a>1或a<-\frac{13}{11}}\end{array}\right.$,$\left\{\begin{array}{l}{a>1或a<-1}\\{a>1或a<-\frac{13}{11}}\end{array}\right.$,得a>1或a<-$\frac{13}{11}$,
综上a≥1或a<-$\frac{13}{11}$,
反之也成立,
故答案为:a≥1或a<-$\frac{13}{11}$
点评 本题主要考查充分条件和必要条件的应用,根据一元二次不等式的性质是解决本题的关键.注意要对系数 进行讨论.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a2+b2>2ab | B. | $a+b≥2\sqrt{ab}$ | C. | $\frac{b}{a}+\frac{a}{b}$≥2 | D. | $\frac{1}{a}+\frac{1}{b}≥\frac{2}{{\sqrt{ab}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-4]∪[3,+∞) | B. | (-∞,-2]∪[-1,+∞) | C. | [-2,-1] | D. | [-4,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $2\sqrt{3}$ | B. | $4\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | $4\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com