精英家教网 > 高中数学 > 题目详情
20.在等差数列{an}中,a2=3,a7=13,数列{bn}的前n项和为Sn,且Sn=$\frac{4}{3}$(4n-1).
(1)求an及bn
(2)求数列{an•bn}的前n项和Tn

分析 (1)利用等差数列的通项公式可得an,利用数列递推关系可得bn
(2)利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵a2=3,a7=13,
∴a1+d=3,a1+6d=13,
解得a1=1,d=2,
∴an=1+2(n-1)=2n-1.
∵数列{bn}的前n项和为Sn,且Sn=$\frac{4}{3}$(4n-1).
∴b1=S1=4,
n≥2时,bn=Sn-Sn-1=$\frac{4}{3}$(4n-1)-$\frac{4}{3}({4}^{n-1}-1)$=4n,n=1时也成立.
∴bn=4n
(2)anbn=(2n-1)•4n
∴数列{an•bn}的前n项和Tn=4+3×42+5×43…+(2n-1)•4n
4Tn=42+3×43+…+(2n-3)•4n+(2n-1)•4n+1
∴-3Tn=4+2(42+43+…+4n)-(2n-1)•4n+1=$2×\frac{4({4}^{n}-1)}{4-1}$-4-(2n-1)•4n+1
∴Tn=$\frac{6n-5}{9}$•4n+1+$\frac{20}{9}$.

点评 本题考查了数列递推关系、等差数列与等比数列的通项公式与求和公式、“错位相减法”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知全集U=R,集合A={x|0<log2x<2},B={x|x≤3m-4或x≥8+m}(m<6).
(1)若m=2,求A∩(∁UB);
(2)若A∩(∁UB)=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆M的圆心在直线x+y=0上,半径为1,直线l:6x-8y-9=0被圆M截得的弦长为$\sqrt{3}$,且圆心M在直线l的右下方.
(1)求圆M的标准方程;
(2)直线mx+y-m+1=0与圆M交于A,B两点,动点P满足|PO|=$\sqrt{2}$|PM|(O为坐标原点),试求△PAB面积的最大值,并求出此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点分别为A,B,离心率为$\frac{\sqrt{2}}{2}$,直线x=-a与y=b交于点D,且|BD|=3$\sqrt{2}$,过点B作直线l交直线x=-a于点M,交椭圆于另一点P.
(1)求直线MB与直线PA的斜率之积;
(2)证明:$\overrightarrow{OM}$•$\overrightarrow{OP}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=(ex-1-1)(x-1),则(  )
A.当x<0,有极大值为2-$\frac{4}{e}$B.当x<0,有极小值为2-$\frac{4}{e}$
C.当x>0,有极大值为0D.当x>0,有极小值为0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$的最大值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)都在直线2x+y-2=0上.
(1)求数列{an}的通项公式;
(2)若bn=nan2,数列{bn}的前n项和为Tn,求证:Tn<$\frac{16}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在底面是正三角形的三棱锥P-ABC中,D为PC的中点,PA=AB=1,PB=PC=$\sqrt{2}$.
(Ⅰ)求证:PA⊥平面ABC;
(Ⅱ)求BD与平面ABC所成角的大小;
(Ⅲ)求二面角D-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.命题“若x>1,则x>2”的逆命题为若x>2,则x>1.

查看答案和解析>>

同步练习册答案