精英家教网 > 高中数学 > 题目详情
命题p:a,G,b成等比数列,命题q:G=
ab
,则p是q的
 
条件.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据充分条件和必要条件的定义结合等比数列的性质进行判断即可.
解答: 解:∵-1,-1,-1成等比数列,∴G=
ab
不成立,
当a=b=G=0,满足=G=
ab
,但a,G,b成等比数列不成立,
则p是q的既不充分也不必要条件,
故答案为:既不充分也不必要.
点评:本题主要考查充分条件和必要条件的判断,利用等比数列的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若sinA=
1
3
,则sin(6π-A)的值为(  )
A、
1
3
B、-
1
3
C、-
2
2
3
D、
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c(其中b>2),且y=f(sinx)的最大值为5,最小值为-1.若f(x)≥-m2+2km+1对x∈[0,c],k∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年2月,西非开始爆发埃博拉病毒疫情,埃博拉病毒是引起人类和灵长类动物发生埃博拉出血热的烈性病毒,引发了世界恐慌.中国国际救援组织立即采用分层抽样的方法从病毒专家、心理专家、地质专家三类专家中抽取若干人组成研究团队赴西非工作,有关数据见表1(单位:人).
病毒专家为了检测当地群众发烧与是否更易受博拉病毒疫情影响,在当地随机选取了110群众进行了检测,并将有关数据整理为不完整的2×2列联表(表2).
表1:
相关人员数抽取人数
病毒专家48x
心理专家24y
地质专家726
表2:
发烧无发烧合计
患Ebola50A60
不患EbolaB4050
合计CDE
(1)求x,y;
(2)写出表2中A、B、C、D、E的值,并判断是否有99.9%的把握认为疫情地区的群众发烧与患Ebola病毒有关;
(3)若从研究团队的病毒专家和心理专家中随机选2人撰写研究报告,求其中恰好有1人为病毒专家的概率.K2临界值表:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:对任意α,β∈R,总有f(α+β)-[f(α)+f(β)]=2015,则下列说法正确的是(  )
A、f(x)+1是奇函数
B、f(x)-1是奇函数
C、f(x)+2015是奇函数
D、f(x)-2015是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

“p∨q为真命题”是“p∧q为真命题”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

所有能使tanα=tan3成立的α组合集合A,请你写出一个集合B,使B⊆A,且B的元素有无限个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|y=
2x-2
},N={x|y=log2(2-x)},则∁R(M∩N)=(  )
A、[1,2)
B、(-∞,1)∪[2,+∞)
C、[0,1]
D、(-∞,0)∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为(  )
A、y=sinx
B、y=1g2x
C、y=lnx
D、y=-x3

查看答案和解析>>

同步练习册答案