精英家教网 > 高中数学 > 题目详情
在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F分别为AD,CD的中点.

(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.
(1);(2)

试题分析:(1)首先建立空间直角坐标系,列出各对应点坐标,表示对应向量坐标,(-2,2,a),(0,1,-a),再根据空间向量数量积定义,得到2-a2=0,从而求出a的值,(2)先判断二面角E-FD1-D为锐二面角,所以求二面角E-FD1-D的余弦值,就转化为求两个平面法向量夹角的余弦值的绝对值.又平面FD1D的一个法向量为,所以关键求平面EFD1的一个法向量n=(x,y,z),利用 n⊥,n⊥可求出x=y=2z,取其一个法向量为n=(2,2,1),再利用空间向量夹角公式,就可得到二面角E-FD1-D的余弦值.
试题解析:解 如图,以D为坐标原点,DA所在直线为x轴,

DC所在直线为y轴,DD1所在直线为z轴,建立坐标系.
(1)由题意得A(2,0,0),D1(0,0,a),C1(0,2,a),F(0,1,0).
 (-2,2,a), (0,1,-a).    2分
因为AC1⊥D1F,所以,即(-2,2,a)·(0,1,-a)=0.
从而2-a2=0,又a>0,故.                       5分
(2)平面FD1D的一个法向量为m=(1,0,0).  设平面EFD1的一个法向量为n=(x,y,z),
因为E(1,0,0),a=2,故=(-1,1,0),(0,1,-2).
由n⊥,n⊥,得-x+y=0且y-2z=0,解得x=y=2z.
故平面EFD1的一个法向量为n=(2,2,1).              8分
因为,且二面角E-FD1-D的大小为锐角,
所以二面角E-FD1-D的余弦值为.                   10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,侧棱平面为等腰直角三角形,,且分别是的中点.

(1)求证:平面
(2)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=.

(1)若,求证:AB∥平面CDE;
(2)求实数的值,使得二面角AECD的大小为60°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2。

(1)求证:BC⊥平面A1DC;
(2)若CD=2,求BE与平面A1BC所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点.
(1)求点A1到平面的BDEF的距离;
(2)求直线A1D与平面BDEF所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱柱ABC-A1B1C1在如图所示的空间直角坐标系中,已知AB=2,AC=4,A1A=3.D是BC的中点.

(1)求直线DB1与平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正四面体的顶点分别在两两垂直的三条射线上,则在下列命题中,错误的为(   )
A.是正三棱锥
B.直线平面
C.直线所成的角是
D.二面角

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

由空间向量构成的向量集合,则向量的模的最小值为              .

查看答案和解析>>

同步练习册答案