【题目】已知函数, ,设(其中表示中的较小者).
(1)在坐标系中画出函数的图像;
(2)设函数的最大值为,试判断与1的大小关系,并说明理由.
(参考数据: , , )
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①如果不同直线都平行于平面,则一定不相交;
②如果不同直线都垂直于平面,则一定平行;
③如果平面互相平行,若直线,直线,则;
④如果平面互相垂直,且直线也互相垂直,若,则;
其中正确的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点(0,2)的直线l与中心在原点,焦点在x轴上且离心率为 的椭圆C相交于A、B两点,直线 过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称.
(1)求直线l的方程;
(2)求椭圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 的离心率为e,经过第一、三象限的渐近线的斜率为k,且e≥ k.
(1)求m的取值范围;
(2)设条件p:e≥ k;条件q:m2﹣(2a+2)m+a(a+2)≤0.若p是q的必要不充分条件,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,MD⊥平面ABCD,NB∥MD,且AD=2,NB=1,CD=MD=3.
(1)过B作平面BFG∥平面MNC,平面BFG与CD、DM分别交于F、G,求AF与平面MNC所成角的正弦值;
(2)E为直线MN上一点,且平面ADE⊥平面MNC,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,三棱柱A1B1C1﹣ABC的侧棱AA1⊥底面ABC,AB⊥AC,AB=AA1 , D是棱CC1的中点.
(Ⅰ)证明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一点E,使C1E∥平面A1BD?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四棱锥中, 是正方形, 是正方形的中心, 底面, 是的中点.
(I)证明: 平面;
(II)证明:平面平面;
(III)已知: ,求点到面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速(单位: )与其耗氧量单位数之间的关系可以表示为函数,其中为常数,已知一条鲑鱼在静止时的耗氧量为100个单位;而当它的游速为时,其耗氧量为2700个单位.
(1)求出游速与其耗氧量单位数之间的函数解析式;
(2)求当一条鲑鱼的游速不高于时,其耗氧量至多需要多少个单位?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com