精英家教网 > 高中数学 > 题目详情
通过点的运动及线的运动变化,讨论相交弦定理、切割线定理及其推论和切线长定理之间的联系.

解:经过一定点P作圆的弦或割线或切线,如图.

设⊙O半径为R,观察图形,可以得出:

在图(1)中,PA·PB=PC·PD=PE·PF=(R-OP)(R+OP)=R2-OP2

在图(2)中,PA·PB=PT2=OP2-OT2=OP2-R2

在图(3)中,PA·PB=PC·PD=PT2=OP2-R2.

由于PA·PB均等于|OP2-R2|,为一常数,叫做点P关于⊙O的幂,所以相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正四面体ABCD的棱长为3cm.
(1)求证:AD⊥BC;
(2)已知点E是CD的中点,点P在△ABC的内部及边界上运动,且满足EP∥平面ABD,试求点P的轨迹;
(3)有一个小虫从点A开始按以下规则前进:在每一个顶点处等可能地选择通过这个顶点的三条棱之一,并且沿着这条棱爬到尽头,当它爬了12cm之后,求恰好回到A点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四面体ABCD的棱长为3cm.
(1)已知点E是CD的中点,点P在△ABC的内部及边界上运动,且满足EP∥平面ABD,试求点P的轨迹;
(2)有一个小虫从点A开始按以下规则前进:在每一个顶点处等可能地选择通过这个顶点的三条棱之一,并且沿着这条棱爬到尽头,当它爬了12cm之后,求恰好回到A点的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正四面体ABCD的棱长为3cm.
(1)求证:AD⊥BC;
(2)已知点E是CD的中点,点P在△ABC的内部及边界上运动,且满足EP平面ABD,试求点P的轨迹;
(3)有一个小虫从点A开始按以下规则前进:在每一个顶点处等可能地选择通过这个顶点的三条棱之一,并且沿着这条棱爬到尽头,当它爬了12cm之后,求恰好回到A点的概率.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2011年江苏省南通市通州高级中学高考综合测试数学试卷(解析版) 题型:解答题

如图,已知正四面体ABCD的棱长为3cm.
(1)求证:AD⊥BC;
(2)已知点E是CD的中点,点P在△ABC的内部及边界上运动,且满足EP∥平面ABD,试求点P的轨迹;
(3)有一个小虫从点A开始按以下规则前进:在每一个顶点处等可能地选择通过这个顶点的三条棱之一,并且沿着这条棱爬到尽头,当它爬了12cm之后,求恰好回到A点的概率.

查看答案和解析>>

同步练习册答案