【题目】已知函数f(x)= 在(﹣∞,+∞)上是具有单调性,则实数m的取值范围 .
【答案】(1, ]
【解析】解:令 h(x)=mx2+1,x≥0;g(x)=(m2﹣1)2x , x<0;
①当 m>1时,要使得f(x)在(﹣∞,+∞)上是具有单调性,
即要满足m2﹣1≤1﹣ ≤m≤
故:1<m≤ ;
②当 m<﹣1时,h(x)在x≥0上递减,g(x)在x<0上递增,
所以,f(x)在R上不具有单调性,不符合题意;
③当 m=±1时,g(x)=0;当m=0时,h(x)=1;
所以,f(x)在R上不具有单调性,不符合题意;
④当﹣1<m<0 时,h(x)在x≥0上递减,g(x)在x<0上递减,
对于任意的x≥0,g(x)<0;当x→0时,h(x)>0;
所以,f(x)在R上不具有单调性,不符合题意;
⑤当0<m<1时,h(x)在x≥0上递增,g(x)在x<0上递减;
所以,f(x)在R上不具有单调性,不符合题意;
所以答案是:(1, ]
【考点精析】认真审题,首先需要了解函数单调性的性质(函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集).
科目:高中数学 来源: 题型:
【题目】设等比数列的前项和为,,且,,成等差数列,数列满足.
(1)求数列的通项公式;
(2)设,数列的前项和为,若对任意,不等式 恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+bx(a,b∈R)在点(1,f(1))处的切线方程为x﹣2y﹣2=0.
(1)求a,b的值;
(2)当x>1时,f(x)+ <0恒成立,求实数k的取值范围;
(3)证明:当n∈N* , 且n≥2时, + +…+ > .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为棱AB,BC的中点,点F在侧棱B1B上,且B1E⊥C1F,A1C1⊥B1C1.
(1)求证:DE∥平面A1C1F;
(2)求证:B1E⊥平面A1C1F
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:的焦距为2,一条准线方程为x=,A,B分别为椭圆的右顶点和上顶点,点P,Q在的椭圆上,且点P在第一象限.
(1)求椭圆E的标准方程;
(2)若点P,Q关于坐标原点对称,且PQ⊥AB,求四边形ABCD的面积;
(3)若AP,BQ的斜率互为相反数,求证:PQ斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点.
(1)求椭圆的方程;
(2)已知、是椭圆上的两点,是椭圆上位于直线两侧的动点.
①若直线的斜率为,求四边形面积的最大值;
②当运动时,满足,试问直线的斜率是否为定值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com