精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= 在(﹣∞,+∞)上是具有单调性,则实数m的取值范围

【答案】(1, ]
【解析】解:令 h(x)=mx2+1,x≥0;g(x)=(m2﹣1)2x , x<0;
①当 m>1时,要使得f(x)在(﹣∞,+∞)上是具有单调性,
即要满足m2﹣1≤1 ≤m≤
故:1<m≤
②当 m<﹣1时,h(x)在x≥0上递减,g(x)在x<0上递增,
所以,f(x)在R上不具有单调性,不符合题意;
③当 m=±1时,g(x)=0;当m=0时,h(x)=1;
所以,f(x)在R上不具有单调性,不符合题意;
④当﹣1<m<0 时,h(x)在x≥0上递减,g(x)在x<0上递减,
对于任意的x≥0,g(x)<0;当x→0时,h(x)>0;
所以,f(x)在R上不具有单调性,不符合题意;
⑤当0<m<1时,h(x)在x≥0上递增,g(x)在x<0上递减;
所以,f(x)在R上不具有单调性,不符合题意;
所以答案是:(1, ]
【考点精析】认真审题,首先需要了解函数单调性的性质(函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等比数列的前项和为,且成等差数列,数列满足

(1)求数列的通项公式;

(2)设,数列的前项和为,若对任意,不等式 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+bx(a,b∈R)在点(1,f(1))处的切线方程为x﹣2y﹣2=0.
(1)求a,b的值;
(2)当x>1时,f(x)+ <0恒成立,求实数k的取值范围;
(3)证明:当n∈N* , 且n≥2时, + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为棱AB,BC的中点,点F在侧棱B1B上,且B1E⊥C1F,A1C1⊥B1C1

(1)求证:DE∥平面A1C1F;

(2)求证:B1E⊥平面A1C1F

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:的焦距为2,一条准线方程为x=,A,B分别为椭圆的右顶点和上顶点,点P,Q在的椭圆上,且点P在第一象限.

(1)求椭圆E的标准方程;

(2)若点P,Q关于坐标原点对称,且PQ⊥AB,求四边形ABCD的面积;

(3)若AP,BQ的斜率互为相反数,求证:PQ斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题方程有两个不等的实根;命题方程无实根,若“”为真,“”为假,则实数的取值范围为___________.(写成区间的形式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知,且,求证:

(2)解关于的不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点.

(1)求椭圆的方程;

(2)已知是椭圆上的两点,是椭圆上位于直线两侧的动点.

①若直线的斜率为,求四边形面积的最大值;

②当运动时,满足,试问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=x2+ax+b在(0,1)上有两个不同的零点,记min{m,n}= ,则min{h(0),h(1)}的取值范围为

查看答案和解析>>

同步练习册答案