精英家教网 > 高中数学 > 题目详情
.求满足下列条件的椭圆的标准方程.
(1)已知椭圆的长轴是短轴的倍,且过点,并且以坐标轴为对称轴,
(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点


由题意解得
椭圆方程为
故椭圆方程为,或
(2)解:设椭圆方程
在椭圆上,
由题意可知解得
椭圆方程为
故所求椭圆方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的左焦点为(-1,0),离心率为,过点的直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(II)设过点F不与坐标轴垂直的直线交椭圆C于A、 B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与构成正三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值? 若存在,求出的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为l.
(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;
(Ⅱ)当∠ABC=60°,求菱形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在的函数.给出下列结论:
①函数的值域为
②关于的方程个不相等的实数根;
③当时,函数的图象与轴围成的图形面积为,则
④存在,使得不等式成立
其中你认为正确的所有结论的序号为______________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知是椭圆的左、右焦点,过点F1作倾斜角为 的直线交椭圆于A,B两点,的内切圆的半径为
(I)求椭圆的离心率;
(II)若,求椭圆的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率为,过其右焦点斜率为)的直线与椭圆交于A,B两点,若,则的值为(   )
A  1         B        C         D  2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的左准线为l,左、右焦点分别为F1F2,抛物线C2的准线为l,焦点为F2C1C2的一个交点为P,则|PF2|的值等于
A.B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知焦点在轴上、中心在原点的椭圆上一点到两焦点的距离之和为,若该椭圆的离心率,则椭圆的方程是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案