分析 (1)由f(x1•x2)=f(x1)+f(x2),令x1=x2=1得f(1)=f(1)+f(1),即可得出.
(2)f(42)=f(4•4)=f(4)+f(4)=2,f(64)=f(16)+f(4)=3.由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64),再利用函数f(x)在R*上为增函数即可得出.
解答 解:(1)∵f(x1•x2)=f(x1)+f(x2),令x1=x2=1得f(1)=f(1)+f(1),
∴f(1)=0.…(3分)
(2)f(42)=f(4•4)=f(4)+f(4)=2,f(64)=f(16)+f(4)=3.
∴由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64)…(7分)
∵函数f(x)在R*上为增函数,
∴$\left\{{\begin{array}{l}{3x+1>0}\\{2x-6>0}\\{(3x+1)(2x-6)≤64}\end{array}}\right.$,解得3<x≤5.…(10分)
点评 本题考查了抽象函数的单调性及其应用、不等式的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|x<1} | B. | {x|x>1} | C. | {x|x<-1或x>1} | D. | {x|x<-1或0<x<1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2-$\sqrt{3}$ | B. | $\sqrt{3}$-1 | C. | $\frac{2-\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}-1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{4}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,2,0) | B. | (0,0,3) | C. | (1,0,3) | D. | (0,2,3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com