精英家教网 > 高中数学 > 题目详情
14.若$cos(\frac{π}{4}-θ)cos(\frac{π}{4}+θ)=\frac{{\sqrt{2}}}{6}$,则cos2θ=$\frac{{\sqrt{2}}}{3}$.

分析 由两角和与差的余弦函数展开已知式子,由二倍角的余弦公式可得.

解答 解:∵$cos(\frac{π}{4}-θ)cos(\frac{π}{4}+θ)=\frac{{\sqrt{2}}}{6}$,
∴$\frac{\sqrt{2}}{2}$(cosθ+sinθ)•$\frac{\sqrt{2}}{2}$(cosθ-sinθ)=$\frac{\sqrt{2}}{6}$,
∴$\frac{1}{2}$(cos2θ-sin2θ)=$\frac{\sqrt{2}}{6}$,
∴$\frac{1}{2}$cos2θ=$\frac{\sqrt{2}}{6}$,
∴cos2θ=$\frac{\sqrt{2}}{3}$
故答案为:$\frac{\sqrt{2}}{3}$

点评 本题考查两角和与差的三角函数,涉及二倍角公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,圆柱OO1的底面圆半径为2,ABCD为经过圆柱轴OO1的截面,点P在$\widehat{{A}{B}}$上且$\widehat{{A}{P}}=\frac{1}{3}\widehat{{A}{P}{B}}$,Q为PD上任意一点.
(Ⅰ)求证:AQ⊥PB;
(Ⅱ)若线段PD的长为$2\sqrt{3}$,求圆柱OO1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(x)=ax3+x+c在[a,b]上是奇函数,则a+b+c+2的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设$f(x)=\left\{\begin{array}{l}cosπx(x<\frac{1}{2})\\ 2f(x-1)(x>\frac{1}{2})\end{array}\right.$,则$f(\frac{1}{3})+f(\frac{13}{6})$=$\frac{1}{2}+2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且一个零点是2,则使得f(x)<0的x的取值范围是(  )
A.(-∞,-2]B.(-∞,-2)∪(2,+∞)C.(2,+∞)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若n∈N*,则1+2+22+23+…+2n+1=(  )
A.A2n+1-1B.2n+2-1C.$\frac{(n+2)(1+{2}^{n+1})}{2}$D.$\frac{(n+1)(1+{2}^{n+1})}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.{an}的前n顶和为Sn,a1=1,Sn=2an-1,则Sn=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.己知函数f(x)=$\frac{1}{3}{x}^{3}-a{x}^{2}-3ax+b$,实数a>0,b>0.若函数f(x)在x=0处的切线斜率为-3,
(1)试确定a的值;
(2)若b=0,求f(x)的极大值和极小值;
(3)若当x∈[b,3b]时,f(x)>4b恒成立.求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在下列各题中,p是q的什么条件?
(1)p:四边形是正方形,q:四边形的边相等.
(2)p:t≠3,q:t2≠9.
(3)p:x>y.q:$\frac{1}{x}$<$\frac{1}{y}$.

查看答案和解析>>

同步练习册答案