精英家教网 > 高中数学 > 题目详情
20.已知抛物线y=-$\frac{1}{4}$x2的焦点为F,则过F的最短弦长为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.4D.8

分析 当AB与y轴垂直时,通径长最短,即可得出结论.

解答 解:由抛物线y=-$\frac{1}{4}$x2可得:焦点F(0,-1).
∴当AB与y轴垂直时,通径长最短,|AB|=2p=4.
故选:C.

点评 本题考查了抛物线的焦点弦长问题,利用通径长最短是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.函数f(x)在定义域[-1,1]内是递增的函数,而且f(x-1)<f(2x-1),则x的取值范为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\ a{log_2}x,x>0\end{array}\right.$,且f(-1)=f(2),则$f({\frac{1}{4}})$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某售报亭每天以每份0.5元的价格从报社购进某日报,然后以每份1元的价格出售,如果当天卖不完,剩余报纸以每份0.1元的价格退回报社.售报亭记录近100天的日需求量,绘出频率分布直方图如图所示.若售报亭一天进货数为400份,以X(单位:份,150≤X≤550)表示该报纸的日需求量,Y(单位:元)表示该报纸的日利润.

(Ⅰ)将Y表示为X的函数;
(Ⅱ)在直方图的日需求量分组中,以各组的区间中点值代表该组的各个值,日需求量落入该区间的频率作为日需求量取该区间中点值的概率,求利润Y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一个圆锥的侧面展开图是圆心角为$\frac{4}{3}π$,半径为18的扇形,则这个圆锥的体积为$288\sqrt{5}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线:$\frac{sinθ}{a}$x+$\frac{cosθ}{b}$y=1(a,b为给定的正常数,θ为参数,θ∈[0,2π))构成的集合为S,给出下列命题:
①当θ=$\frac{π}{4}$时,S中直线的斜率为$\frac{b}{a}$;
②S中的所有直线可覆盖整个坐标平面.
③当a=b时,存在某个定点,该定点到S中的所有直线的距离均相等;
其中正确的是③(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各组函数f(x)与g(x)的图象相同的是(  )
A.f(x)=x,g(x)=($\sqrt{x}$)2B.$f(x)=\frac{{{x^2}-4}}{x-2}$与g(x)=x+2
C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,(x≥0)}\\{-x,(x<0)}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题,正确命题的个数为(  )
①若tanA•tanB>1,则△ABC一定是钝角三角形;
②若sin2A+sin2B=sin2C,则△ABC一定是直角三角形;
③若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC一定是等边三角形;
④在锐角△ABC中,一定有sinA>cosB.
⑤在△ABC中,内角A,B,C的对边分别为a,b,c,若$\frac{a}{cosA}=\frac{b}{cosB}=\frac{c}{cosC}$,则△ABC一定是等边三角形.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.背写课本中的部分公式
(1)基本性质:①loga1=0;②logaa=1;③a${\;}^{lo{g}_{a}N}$=N.
1、对数的运算
性质:如果a>0,且a≠1,M>0,N>0,那么:
loga(M•N)=logaM+logaN;
loga$\frac{M}{N}$=logaM-logaN;
logaMn=nlogaM(n∈R).
2、换底公式:logab=$\frac{{log}_{c}b}{{log}_{c}a}$(a>0且a≠1;c>0且c≠1;b>0)
换底公式的变形公式:①logab•logba=1;②log${\;}_{\frac{1}{a}}$b=-logab;③log${\;}_{{a}^{n}}$bm=$\frac{m}{n}{log}_{a}b$.

查看答案和解析>>

同步练习册答案