精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1是实数集上的奇函数,求的值;

2用定义证明在实数集上单调递增;

3值域为,求的取值范围.

【答案】(1);(2)见解析;(3)

【解析】试题分析:(1根据奇函数性质fx+fx= 0化简可得的值;2)关键在于作差之后的变形一般先通分再因式分解,最后讨论各因子符号,进而确定差的符号3)先根据函数单调性确定函数值域再根据集合包含关系,利用数轴确定的取值范围.

试题解析:1fx)是R上的奇函数,

fx+fx=m+m=0,即2m +=02m1=0

解得m=

2)设 x1x2x1x2R

fx1fx2=mm=

x1x2

fx1﹣fx20,即fx1fx2),

fx)在R上单调递增;

3)由,所以m1fxmfx)值域为D,且

D=m﹣1m),

m的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上且以2为周期的偶函数,当0≤x≤1时,f(x)=x2.如果函数g(x)=f(x)-(x+m)有两个零点,则实数m的值为( )

A.2k(k∈Z) B.2k或2k+ (k∈Z)

C.0 D.2k或2k- (k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点DAB的中点.

(1)求证:ACB1C

(2)求证:AC1∥平面CDB1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形的长,宽,将其沿对角线折起,得到四面体

如图所示,给出下列结论:

①四面体体积的最大值为

②四面体外接球的表面积恒为定值;

③若分别为棱的中点,则恒有

④当二面角为直二面角时,直线所成角的余弦值为

⑤当二面角的大小为时,棱的长为

其中正确的结论有____________________(请写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、2万件、1.3万件,为了预测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数yabxc(其中abc为常数),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是现代生活进行信息交流的重要工具,若要调查某公司使用微信的员工经常使用微信与年龄的关系,并规定每天使用微信时间在一小时以上为经常使用微信。据统计,该公司200名员工中90%的人使用微信,其中不经常使用微信的有60人,其余经常使用微信。若将员工年龄分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,使用微信的中75%是青年人.经常使用微信的员工中,有80人是青年人.

(1)请完成如下联列表,

青年人

中年人

合计

经常使用微信

不经常使用微信

合计

(2)由列联表中所得数据,是否有99.9%的把握认为“经常使用微信与年龄有关”?

3现采用分层抽样的方法从“经常使用微信的人”中抽取6人,从已抽取的这6人中任选2人,求“选出的2人均为青年人”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)ax3cxd(a≠0)R上的奇函数,当x1时,f(x)取得极值-2.

1)求函数f(x)的解析式;

2)求函数f(x)的单调区间和极大值;

3)证明:对任意x1x2∈(1,1),不等式|f(x1)f(x2)|<4恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,EAA1的中点,画出过D1CE的平面与平面ABB1A1的交线,并说明理由.

查看答案和解析>>

同步练习册答案