精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角ABC所对的边分别是abc,且csin2BbsinA+B)=0

1)求角B的大小;

2)设a4c6,求sinC的值.

【答案】12

【解析】

1)根据正弦定理得到sinCsin2BsinBsinA+B)=0,化简得到cosB,解得答案.

2)根据余弦定理得到b2,再根据正弦定理计算得到答案.

csin2BbsinA+B)=0,由正弦定理可得,sinCsin2BsinBsinA+B)=0

化简可得2sinCsinBcosBsinBsinC0,∵sinBsinC≠0,∴cosB

B∈(0π),∴.

2)由余弦定理可得:cosB,∴b2

由正弦定理可得:sinC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点.

1)求的取值范围;

2)设的两个极值点,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点,经过点的直线与抛物线交于不同的两点,直线与直线交于点,经过点且与直线垂直的直线轴于点.

1)求抛物线的方程和焦点的坐标;

2)判断直线与直线的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:

月份

1

2

3

4

5

销量(百台)

0.6

0.8

1.2

1.6

1.8

(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测6月份该商场空调的销售量;

(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:

有购买意愿对应的月份

7

8

9

10

11

12

频数

60

80

120

130

80

30

现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.

参考公式与数据:线性回归方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由我国引领的5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G经济产出所做的预测.结合下图,下列说法正确的是(

A.5G的发展带动今后几年的总经济产出逐年增加

B.设备制造商的经济产出前期增长较快,后期放缓

C.设备制造商在各年的总经济产出中一直处于领先地位

D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店

第一天售出但第二天未售出的商品有______种;

这三天售出的商品最少有_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn,且=9S6=60

(I)求数列{an}的通项公式;

II)若数列{bn}满足bn+1bn=n∈N+)且b1=3,求数列的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)函数上的最大值.

①求

②若过点可作出曲线的三条切线,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数有下述四个结论:

的周期为

上单调递增;

③函数上有个零点;

④函数的最小值为.

其中所有正确结论的编号为(

A.①②B.②③C.③④D.②④

查看答案和解析>>

同步练习册答案