精英家教网 > 高中数学 > 题目详情
曲线C上任一点到定点(0,)的距离等于它到定直线的距离.
(1)求曲线C的方程;
(2)经过P(1,2)作两条不与坐标轴垂直的直线分别交曲线C于A、B两点,且,设M是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.
(1)y=2x2
(2)M轨迹是抛物线,故存在一定点和一定直线,使得M到定点的距离等于它到定直线的距离。所求的定点为,定直线方程为y=.

试题分析:
思路分析:(1)曲线C上任一点到定点(0,)的距离等于它到定直线的距离.所以,由抛物线的定义,其方程为,而,所以,y=2x2
(2)利用“参数法” 得到y=4x2+4x+,根据图象的平移变换得到结论:定点为,定直线方程为y=.
解:(1)因为,利用抛物线的定义,确定得到y=2x2
(2)设:y-2=k(x-1)(k≠0) :y=2=
得2x2-kx+k-2=0
同理得B点坐标为

消去k得:y=4x2+4x+ ………9分
M轨迹是抛物线,故存在一定点和一定直线,使得M到定点的距离等于它到定直线的距离。将抛物线方程化为,此抛物线可看成是由抛物线左移个单位,上移个单位得到的,而抛物线的焦点为(0,),准线为y=-.∴所求的定点为,定直线方程为y=.
点评:难题,利用“直接法”可确定得到抛物线方程。利用“参数法”求得抛物线方程,通过研究焦点、准线等,达到确定“存在性”的目的。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为原点,每条曲线上取两个点,将其坐标记录于表中:










(1)求的标准方程;
(2)设斜率不为0的动直线有且只有一个公共点,且与的准线交于,试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过抛物线的焦点F作斜率分别为的两条不同的直线,且相交于点A,B,相交于点C,D。以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为
(I)若,证明;
(II)若点M到直线的距离的最小值为,求抛物线E的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出如下四个命题:
①若“”为假命题,则均为假命题;
②命题“若,则”的否命题为“若,则”;
③命题“任意”的否定是“存在”;
④在中,“”是“”的充要条件.
其中不正确命题的个数是    (    )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A(x1,y1)和B(x2,y2)两点.则:(I)y1 y2=     ;(Ⅱ)三角形ABF面积的最小值是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是( )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点的抛物线的标准方程是                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线()上一点到其准线的距离为.

(Ⅰ)求的值;
(Ⅱ)设抛物线上动点的横坐标为),过点的直线交于另一点,交轴于点(直线的斜率记作).过点的垂线交于另一点.若恰好是的切线,问是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为,若双曲线的一条渐近线与直线平行,则实数的值是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案