精英家教网 > 高中数学 > 题目详情

【题目】2019121日起郑州市施行《郑州市城市生活垃圾分类管理办法》,郑州将正式进入城市生活垃圾分类时代.为了增强社区居民对垃圾分类知识的了解,积极参与到垃圾分类的行动中,某社区采用线下和线上相结合的方式开展了一次200名辖区成员参加的垃圾分类有关知识专题培训.为了了解参训成员对于线上培训、线下培训的满意程度,社区居委会随机选取了40名辖区成员,将他们分成两组,每组20人,分别对线上、线下两种培训进行满意度测评,根据辖区成员的评分(满分100分)绘制了如图所示的茎叶图.

1)根据茎叶图判断辖区成员对于线上、线下哪种培训的满意度更高,并说明理由.

2)求这40名辖区成员满意度评分的中位数,并将评分不超过、超过分别视为基本满意”“非常满意两个等级.

)利用样本估计总体的思想,估算本次培训共有多少辖区成员对线上培训非常满意;

)根据茎叶图填写下面的列联表.

基本满意

非常满意

总计

线上培训

线下培训

总计

并根据列联表判断能否有995%的把握认为辖区成员对两种培训方式的满意度有差异?

附:

0010

0005

0001

6635

7879

10828

,其中

【答案】1)辖区成员对线下培训的满意度更高;(2)(80,()列联表见解析,没有995%的把握认为辖区成员对两种培训方式的满意度有差异.

【解析】

1)直接由茎叶图分析线上培训与线下培训的数据得结论;

2)由茎叶图结合中位数公式求

求出线上培训非常满意的频率,乘以200得对线上培训非常满意的学员人数;

结合茎叶图填写列联表,再求出的观测值,结合临界值表得结论.

解:(1)山茎叶图可知,线上培训的满意度评分在茎7上的最多,关于茎7大致呈对称分布,线下培训的满意度评分分布在茎8上的最多,关于茎8大致呈对称分布,故可以认为线下培训满意度评分比线上培训满意度评分更高,因此辖区成员对线下培训的满意度更高.

2)由茎叶图知

)参加线上培训满意度调查的20名辖区成员中共有6名成员对线上培训非常满意,频率为,又本次培训共200名学员参加,所以对线上培训非常满意的成员约有(人).

)列联表如下:

基本满意

非常满意

总计

线上培训

14

6

20

线下培训

6

14

20

总计

20

20

40

于是的观测值

由于

所以没有的把握认为辖区成员对两种培训方式的满意度有差异.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为ABCDE五个等级.某试点高中2019年参加“选择考”总人数是2017年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2017年和2019年“选择考”成绩等级结果,得到如图表:

针对该校“选择考”情况,2019年与2017年比较,下列说法正确的是( )

A.获得A等级的人数不变B.获得B等级的人数增加了1

C.获得C等级的人数减少了D.获得E等级的人数不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求直线的普通方程和曲线的直角坐标方程;

2)设,直线与曲线相交于两点,线段的中点为,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019121日起郑州市施行《郑州市城市生活垃圾分类管理办法》,郑州将正式进入城市生活垃圾分类时代.为了增强社区居民对垃圾分类知识的了解,积极参与到垃圾分类的行动中,某社区采用线下和线上相结合的方式开展了一次200名辖区成员参加的垃圾分类有关知识专题培训.为了了解参训成员对于线上培训、线下培训的满意程度,社区居委会随机选取了40名辖区成员,将他们分成两组,每组20人,分别对线上、线下两种培训进行满意度测评,根据辖区成员的评分(满分100分)绘制了如图所示的茎叶图.

1)根据茎叶图判断辖区成员对于线上、线下哪种培训的满意度更高,并说明理由.

2)求这40名辖区成员满意度评分的中位数,并将评分不超过、超过分别视为基本满意”“非常满意两个等级.

)利用样本估计总体的思想,估算本次培训共有多少辖区成员对线上培训非常满意;

)根据茎叶图填写下面的列联表.

基本满意

非常满意

总计

线上培训

线下培训

总计

并根据列联表判断能否有995%的把握认为辖区成员对两种培训方式的满意度有差异?

附:

0010

0005

0001

6635

7879

10828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为函数的导函数.

1)若函数的最小值为0,求实数的值;

2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在矩形ABCD中,AB5AD2,点E在线段AB上,且BE1,将ADE沿DE折起到A1DE的位置,使得平面A1DE⊥平面BCDE

1)求证:CE⊥平面A1DE

2)线段A1C上是否存在一点F,使得BF//平面A1DE?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某百货公司1~6月份的销售量与利润的统计数据如表:

月份

1

2

3

4

5

6

销售量x/万件

10

11

13

12

8

6

利润y/万元

22

25

29

26

16

12

(1)根据2~5月份的统计数据,求出y关于x的回归直线方程x+;

(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新药在进入临床实验之前,需要先通过动物进行有效性和安全性的实验.现对某种新药进行5000次动物实验,一次实验方案如下:选取3只白鼠对药效进行检验,当3只白鼠中有2只或2只以上使用效果明显,即确定实验成功;若有且只有1效果明显,则再取2只白鼠进行二次检验,当2只白鼠均使用效果明显,即确定实验成功,其余情况则确定实验失败.设对每只白鼠的实验相互独立,且使用效果明显的概率均为

)若,设该新药在一次实验方案中实验成功的概率为,求的值;

)若动物实验预算经费700万元,对每只白鼠进行实验需要300元,其他费用总计为100万元,问该动物实验总费用是否会超出预算,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的左,右焦点分别为点又恰为抛物线的焦点,以为直径的圆与椭圆仅有两个公共点.

1)求椭圆的标准方程;

2)若直线相交于两点,记点到直线的距离分别为.直线相交于两点,记的面积分别为

(ⅰ)证明:的周长为定值;

(ⅱ)求的最大值.

查看答案和解析>>

同步练习册答案