精英家教网 > 高中数学 > 题目详情
(2012•雁江区一模)已知函数f(x)=ax2+ln(x+1).
(Ⅰ)当a=-
1
4
时,求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在
x≥0
y-x≤0
所表示的平面区域内,求实数a的取值范围.
(Ⅲ)求证:(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]<e
(其中n∈N*,e是自然对数的底数).
分析:(Ⅰ)把a=-
1
4
代入函数f(x),再对其进行求导利用导数研究函数f(x)的单调区间;
(Ⅱ)已知当x∈[0,+∞)时,函数y=f(x)图象上的点都在
x≥0
y-x≤0
所表示的平面区域内,将问题转化为当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,只要求出ax2+ln(x+1)-x的最小值即可,令新的函数,利用导数研究其最值问题;
(Ⅲ)由题设(Ⅱ)可知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,利用此不等式对所要证明的不等式进行放缩,从而进行证明;
解答:解:(Ⅰ)当a=-
1
4
时,f(x)=-
1
4
x2+ln(x+1)
(x>-1),
f′(x)=-
1
2
x+
1
x+1
=-
(x+2)(x-1)
2(x+1)
(x>-1),
由f'(x)>0解得-1<x<1,由f'(x)<0,
解得x>1.
故函数f(x)的单调递增区间为(-1,1),单调递减区间为(1,+∞).(4分)
(Ⅱ)因函数f(x)图象上的点都在
x≥0
y-x≤0
所表示的平面区域内,
则当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,
设g(x)=ax2+ln(x+1)-x(x≥0),
只需g(x)max≤0即可.(5分)
g′(x)=2ax+
1
x+1
-1
=
x[2ax+(2a-1)]
x+1

(ⅰ)当a=0时,g′(x)=
-x
x+1
,当x>0时,g'(x)<0,函数g(x)在(0,+∞)上单调递减,
故g(x)≤g(0)=0成立.(6分)
(ⅱ)当a>0时,由g′(x)=
x[2ax+(2a-1)]
x+1
=0
,因x∈[0,+∞),所以x=
1
2a
-1

①若
1
2a
-1<0
,即a>
1
2
时,在区间(0,+∞)上,g'(x)>0,
则函数g(x)在(0,+∞)上单调递增,g(x)在[0,+∞)上无最大值(或:当x→+∞时,g(x)→+∞),此时不满足条件;
②若
1
2a
-1≥0
,即0<a≤
1
2
时,函数g(x)在(0,
1
2a
-1)
上单调递减,在区间(
1
2a
-1,+∞)
上单调递增,
同样g(x)在[0,+∞)上无最大值,不满足条件.(8分)
(ⅲ)当a<0时,由g′(x)=
x[2ax+(2a-1)]
x+1

∵x∈[0,+∞),
∴2ax+(2a-1)<0,
∴g'(x)<0,故函数g(x)在[0,+∞)上单调递减,
故g(x)≤g(0)=0成立.
综上所述,实数a的取值范围是(-∞,0].(10分)
(Ⅲ)据(Ⅱ)知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立
(或另证ln(x+1)≤x在区间(-1,+∞)上恒成立),(11分)
2n
(2n-1+1)(2n+1)
=2(
1
2n-1+1
-
1
2n+1
)

ln{(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]}

=ln(1+
2
2×3
)+ln(1+
4
3×5
)+ln(1+
8
5×9
)+…+ln[1+
2n
(2n-1+1)(2n+1)
]
2
2×3
+
4
3×5
+
8
5×9
+…+
2n
(2n-1+1)(2n+1)

=2[(
1
2
-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
9
)+…+(
1
2n-1+1
-
1
2n+1
)]

=2[(
1
2
-
1
2n+1
)]<1

(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]<e
.(14分)
点评:此题主要考查利用导数研究函数的单调区间和最值问题,解题过程中多次用到了转化的思想,第二题实质还是函数的恒成立问题,第三问不等式的证明仍然离不开前面两问所证明的不等式,利用它们进行放缩证明,本题难度比较大,是一道综合题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•雁江区一模)电视台应某企业之约播放两套连续剧.其中,连续剧甲每次播放时间为80min,其中广告时间为1min,收视观众为60万;连续剧乙每次播放时间为40min,其中广告时间为1min,收视观众为20万.已知该企业与电视台达成协议,要求电视台每周至少播放6min广告,而电视台每周只能为该企业提供不多于320min的节目时间.则该电视台通过这两套连续剧所获得的收视观众最多为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•雁江区一模)若sinα=
3
5
,α是第二象限的角,则cos(α-
π
4
)
=
-
2
10
-
2
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•雁江区一模)已知函数f(x)=
3x3-9x2+12x-4,x≤1
x2+1,x>1
,若f(2m+1)>f(m2-2),则实数m的取值范围是
(-1,3)
(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•雁江区一模)已知函数f(x)=m+logax(a>0且a≠1)的图象过点(8,2),点P(3,-1)关于直线x=2的对称点Q在f(x)的图象上.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)令g(x)=2f(x)-f(x-1),求g(x)的最小值及取得最小值时x的值.

查看答案和解析>>

同步练习册答案