精英家教网 > 高中数学 > 题目详情

已知向量,设函数.
(1).求函数f(x)的最小正周期;
(2).已知a,b,c分别为三角形ABC的内角对应的三边长,A为锐角,a=1,,且恰是函数f(x)在上的最大值,求A,b和三角形ABC的面积.

(1);(2).

解析试题分析:本题主要考查平面向量的数量积、二倍角公式、两角和的正弦公式、三角函数、余弦定理、三角形面积等基础知识,意在考查考生的运算求解能力、转化化归想象能力和数形结合能力.第一问,先利用向量的数量积得到的解析式,利用降幂公式、倍角公式、两角和的正弦公式化简表达式,使之化简成的形式,利用求函数的周期;第二问,先将代入得到的范围,数形结合得到的最大值,并求出此时的角A,在三角形中利用余弦定理得到边b的值,最后利用求三角形面积.
试题解析:(1)
    4分
因为,所以最小正周期.        6分
(2)由(1)知,当时,.
由正弦函数图象可知,当时,取得最大值,又为锐角
所以.        8分
由余弦定理,所以

经检验均符合题意.        10分
从而当时,△的面积;        11分
时,.        12分
考点:平面向量的数量积、二倍角公式、两角和的正弦公式、三角函数、余弦定理、三角形面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是
(1)求函数的解析式及其单调增区间;
(2)在锐角三角形△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调递增区间;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求的最小正周期。
(2)若函数的图像关于直线对称,求当的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数.
(1)求函数的周期;
(2)如果的最小值为,求的值,并求此时的最大值及图像的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,定义函数f(x)=·.
(1)求函数f(x)的表达式,并指出其最大值和最小值;
(2)在锐角△ABC中,角ABC的对边分别为abc,且f(A)=1,bc=8,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)化简
(2)若是第三象限角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值为,最小值为.
(1)求的值;
(2)已知函数,当时求自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=sin2ωx+2sinωx·cosωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(,0),求函数f(x)的值域.

查看答案和解析>>

同步练习册答案