精英家教网 > 高中数学 > 题目详情

【题目】已知指数函数满足,定义域为的函数是奇函数.

(1)求函数的解析式;

(2)若函数上有零点,求的取值范围;

(3)若对任意的,不等式恒成立,求实数的取值范围.

【答案】(Ⅰ);(Ⅱ)(3,+∞);(Ⅲ) [9,+∞).

【解析】

试题(1)根据指数函数利用待定系数法求,利用奇函数用特值法求m,n,可得到解析式;(2)根据函数零点的存在性定理求k的取值范围;(3)分析函数的单调性,转化为关于t恒成立问题,利用分离参数法求k的取值范围.

试题解析:

(Ⅰ)设 ,

a=3, , 

因为是奇函数,所以,即 ,

,又

(Ⅱ)由(Ⅰ)知:,又因在(0,1)上有零点,

从而,即

, ∴

∴k的取值范围为

(Ⅲ)由(Ⅰ)知

R上为减函数(不证明不扣分)

又因是奇函数,

所以=

因为减函数,由上式得:,

即对一切,有恒成立,

m(x)=,,易知m(x)上递增,所以

,即实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上且以2为周期的偶函数,当0≤x≤1,f(x)=x2 . 如果函数g(x)=f(x)﹣(x+m)有两个零点,则实数m的值为(
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)令,可将已知三角函数关系转换成代数函数关系,试写出函数的解析式及定义域;

(2)求函数的最大值;

(3)函数在区间内是单调函数吗?若是,请指出其单调性;若不是,请分别指出其单调递增区间和单调递减区间(不需要证明).

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,g(x)=|x﹣2|,则下列结论正确的是(
A.h(x)=f(x)+g(x)是偶函数
B.h(x)=f(x)?g(x)是奇函数
C.h(x)= 是偶函数
D.h(x)= 是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数·则使得成立的的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的方程为,若在x轴上的截距为,且

求直线的交点坐标;

已知直线经过的交点,且在y轴上截距是在x轴上的截距的2倍,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点 且圆心在直线.

(1)求圆的方程;

(2)过点的直线与圆交于两点,问在直线上是否存在定点使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到了如表的列联表:

患心肺疾病

不患心肺疾病

合计

5

10

合计

50

已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.

(1)请将上面的列联表补充完整;

(2)是否有99%的把握认为患心肺疾病与性别有关?说明你的理由.

参考格式:,其中.

下面的临界值仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数Z1 , Z2在复平面内对应的点分别为A(﹣2,1),B(a,3).
(1)若|Z1﹣Z2|= ,求a的值.
(2)复数z=Z1Z2对应的点在二、四象限的角平分线上,求a的值.

查看答案和解析>>

同步练习册答案