精英家教网 > 高中数学 > 题目详情
(2012•四川)如图,在正方体ABCD-A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是
90°
90°
分析:以D为坐标原点,建立空间直角坐标系,利用向量的方法求出
DN
A1M
夹角求出异面直线A1M与DN所成的角.
解答:解:以D为坐标原点,建立如图所示的空间直角坐标系.设棱长为2,
则D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2),
DN
=(0,2,1),
A1M
=(-2,1,-2)
DN
A1M
=0,所以
DN
A1M
,即A1M⊥DN,异面直线A1M与DN所成的角的大小是90°,
故答案为:90°.
点评:本题考查空间异面直线的夹角求解,采用了向量的方法.向量的方法能降低空间想象难度,但要注意有关点,向量坐标的准确.否则容易由于计算失误而出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•四川)如图,动点M到两定点A(-1,0)、B(2,0)构成△MAB,且∠MBA=2∠MAB,设动点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设直线y=-2x+m与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求
|PR||PQ|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A、P两点间的球面距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)如图,在三棱锥P-ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,点P在平面ABC内的射影O在AB上.
(Ⅰ)求直线PC与平面ABC所成的角的大小;
(Ⅱ)求二面角B-AP-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)如图,动点M与两定点A(-1,0)、B(1,0)构成△MAB,且直线MA、MB的斜率之积为4,设动点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设直线y=x+m(m>0)与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求
|PR||PQ|
的取值范围.

查看答案和解析>>

同步练习册答案